People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kim, Seungky
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Direct In Situ Growth of Centimeter-Scale Multi-Heterojunction MoS 2 /WS 2 /WSe 2 Thin-Film Catalyst for Photo-Electrochemical Hydrogen Evolution
Abstract
To date, the in situ fabrication of the large-scale van der Waals multi-heterojunction transition metal dichalcogenides (multi-TMDs) is significantly challenging using conventional deposition methods. In this study, vertically stacked centimeter-scale multi-TMD (MoS 2 /WS 2 /WSe 2 and MoS 2 /WSe 2 ) thin films are successfully fabricated via sequential pulsed laser deposition (PLD), which is an in situ growth process. The fabricated MoS 2 /WS 2 /WSe 2 thin film on p-type silicon (p-Si) substrate is designed to form multistaggered gaps (type-II band structure) with p-Si, and this film exhibits excellent spatial and thickness uniformity, which is verified by Raman spectroscopy. Among various application fields, MoS 2 /WS 2 /WSe 2 is applied to the thin-film catalyst of a p-Si photocathode, to effectively transfer the photogenerated electrons from p-Si to the electrolyte in the photo-electrochemical (PEC) hydrogen evolution. From a comparison between the PEC performances of the homostructure TMDs (homo-TMDs)/p-Si and multi-TMDs/p-Si, it is demonstrated that the multistaggered gap of multi-TMDs/p-Si improves the PEC performance significantly more than the homo-TMDs/p-Si and bare p-Si by effective charge transfer. The new in situ growth process for the fabrication of multi-TMD thin films offers a novel and innovative method for the application of multi-TMD thin films to various fields. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim