Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

A., Ahmad Ramazani S.

  • Google
  • 9
  • 17
  • 235

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2023Falcaria vulgaris leaves extract as an eco-friendly corrosion inhibitor for mild steel in hydrochloric acid media47citations
  • 2021Thermal Degradation Kinetics and Modeling Study of Ultra High Molecular Weight Polyethylene (UHMWP)/Graphene Nanocomposite20citations
  • 2019Mechanical, rheological and oxygen barrier properties of ethylene vinyl acetate/diamond nanocomposites for packaging applications25citations
  • 2019In-situ polymerization of UHMWPE using bi-supported Ziegler-Natta catalyst of MoS2 Oxide/MgCl2 (Ethoxide type)/TiCl4/TiBAcitations
  • 2018In-situ preparation and characterization of ultra-high molecular weight polyethylene/diamond nanocomposites using Bi-supported Ziegler-Natta catalyst29citations
  • 2016Preparation and investigation of tribological properties of ultra-high molecular weight polyethylene (UHMWPE)/graphene oxide26citations
  • 2015Effects of nano graphene oxide as support on the product properties and performance of Ziegler–Natta catalyst in production of UHMWPE25citations
  • 2015LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties36citations
  • 2015Investigation of thermomechanical properties of UHMWPE/graphene oxide nanocomposites prepared by in situ Ziegler–Natta polymerization27citations

Places of action

Chart of shared publication
Ghaderi, Mohammad
1 / 1 shared
Mahdavian, Mohammad
1 / 4 shared
Alimohammadi, Mohammadreza
1 / 1 shared
Khosravi, Fatemeh
1 / 3 shared
Shakiba, Mohamadreza
1 / 3 shared
Abasi, Ehsan
1 / 1 shared
Moradi, Omid
1 / 2 shared
Teo, Ying Shen
1 / 1 shared
Amini, Majed
3 / 5 shared
Haddadi, Seyyed Arash
2 / 5 shared
Shafiee, Mojtaba
2 / 3 shared
Bahrami, Hiva
3 / 3 shared
Khorasheh, Farhad
1 / 1 shared
Baghalha, Morteza
1 / 1 shared
Tayyebi, Ahmad
1 / 1 shared
Mosavian, M. T. Hamed
1 / 1 shared
Baniasadi, Hossein
1 / 21 shared
Chart of publication period
2023
2021
2019
2018
2016
2015

Co-Authors (by relevance)

  • Ghaderi, Mohammad
  • Mahdavian, Mohammad
  • Alimohammadi, Mohammadreza
  • Khosravi, Fatemeh
  • Shakiba, Mohamadreza
  • Abasi, Ehsan
  • Moradi, Omid
  • Teo, Ying Shen
  • Amini, Majed
  • Haddadi, Seyyed Arash
  • Shafiee, Mojtaba
  • Bahrami, Hiva
  • Khorasheh, Farhad
  • Baghalha, Morteza
  • Tayyebi, Ahmad
  • Mosavian, M. T. Hamed
  • Baniasadi, Hossein
OrganizationsLocationPeople

article

Investigation of thermomechanical properties of UHMWPE/graphene oxide nanocomposites prepared by in situ Ziegler–Natta polymerization

  • A., Ahmad Ramazani S.
  • Shafiee, Mojtaba
  • Baniasadi, Hossein
  • Bahrami, Hiva
Abstract

The graphene‐based Ziegler–Natta catalyst has been used to prepare ultrahigh molecular weight polyethylene/graphene oxide (UHMWPE/GO) nanocomposite via in situ polymerization. The morphological investigations have been conducted using X‐ray diffraction patterns and scanning electron microscopy method. The obtained results indicated that no diffraction peak is detected in a GO pattern, which could be due to the exfoliation of graphene nanosheets in the UHMWPE matrix. Morphological investigations indicated that GO nanosheets are dispersed almost uniformly in polymeric matrix, and that there should exist a good interaction between nanofillers and matrix. The mechanical properties of the nanocomposites were studied, and the results showed that the Young (tensile) modulus and tensile strength of the prepared nanocomposites were significantly increased by increasing the filler content, which should be due to the high aspect ratio of GO plates and their uniform dispersion in the UHMWPE matrix. The thermogravimetery investigations reveal that the thermal stability of nanocomposites increase with increasing GO content and that initiation thermal decomposition temperature shifts to higher values.

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • scanning electron microscopy
  • strength
  • tensile strength
  • molecular weight
  • thermal decomposition
  • thermal decomposition temperature