People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martins, Jorge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Formulation and Characterization of a Composite Coating Formulation Based on Acrylic Foam and Cork Granules
- 2022Foldable and Recyclable Iontronic Cellulose Nanopaper for Low-Power Paper Electronicscitations
- 2022Foldable and Recyclable Iontronic Cellulose Nanopaper for Low-Power Paper Electronicscitations
- 2021Handwritten and Sustainable Electronic Logic Circuits with Fully Printed Paper Transistorscitations
- 2021Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxidecitations
- 2021Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxidecitations
- 20202D Resistive Switching Based on Amorphous Zinc–Tin Oxide Schottky Diodescitations
- 2020Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructurationcitations
- 2020Rail-to-Rail Timing Signals Generation Using InGaZnO TFTs for Flexible X-Ray Detectorcitations
- 2016Improving positive and negative bias illumination stress stability in parylene passivated IGZO transistorscitations
Places of action
Organizations | Location | People |
---|
article
Foldable and Recyclable Iontronic Cellulose Nanopaper for Low-Power Paper Electronics
Abstract
<p>An increase in the demand for the next generation of “Internet-of-Things” (IoT) has motivated efforts to develop flexible and affordable smart electronic systems, in line with sustainable development and carbon neutrality. Cellulose holds the potential to fulfil such demands as a low-cost green material due to its abundant and renewable nature and tunable properties. Here, a cellulose-based ionic conductive substrate compatible with printing techniques that combines the mechanical robustness, thermal resistance and surface smoothness of cellulose nanofibrils nanopaper with the high capacitance of a regenerated cellulose hydrogel electrolyte, is reported. Fully screen-printed electrolyte-gated transistors and universal logic gates are demonstrated using the engineered ionic conductive nanopaper and zinc oxide nanoplates as the semiconductor layer. The devices exhibit low-voltage operation (<3 V), and remarkable mechanical endurance under outward folding due to the combination of the robustness of the nanopaper and the compliance of the semiconductor layer provided by the ZnO nanoplates. The printed devices and the ion-conductive nanopaper can be efficiently recycled to fabricate new devices, which is compatible with the circular economy concept.</p>