Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhatnagar, Ashish

  • Google
  • 1
  • 4
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Development and Demonstration of Air Stable rGO‐EC@AB<sub>5</sub> Type Hydrogenated Intermetallic Hybrid for Hydrogen Fuelled Devices15citations

Places of action

Chart of shared publication
Srivastava, Onkar Nath
1 / 1 shared
Shaz, Mohammad Abu
1 / 1 shared
Tripathi, Prashant
1 / 2 shared
Veziroglu, Ayfer
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Srivastava, Onkar Nath
  • Shaz, Mohammad Abu
  • Tripathi, Prashant
  • Veziroglu, Ayfer
OrganizationsLocationPeople

article

Development and Demonstration of Air Stable rGO‐EC@AB<sub>5</sub> Type Hydrogenated Intermetallic Hybrid for Hydrogen Fuelled Devices

  • Srivastava, Onkar Nath
  • Shaz, Mohammad Abu
  • Tripathi, Prashant
  • Bhatnagar, Ashish
  • Veziroglu, Ayfer
Abstract

<jats:title>Abstract</jats:title><jats:p>Hydrogen is a promising alternative energy vector, but its use at an appropriate site requires storage, which is a crucial aspect. Hydrogen storage (HS) in the form of metal hydrides represents an attractive possibility, and is being investigated worldwide. La(Ni<jats:sub>0.95</jats:sub>Fe<jats:sub>0.05</jats:sub>)<jats:sub>5</jats:sub> (LNF) has achieved significant attention as a HS media due to its suitable thermodynamics. However, its use as an effective storage material is hindered due to burning of hydrogenated LNF (LNFH) on exposure to air. The pristine LNFH catches fire rapidly on exposure to atmosphere. Here, a breakthrough strategy is demonstrated for design of hydrogenated air‐stabilized hybrid material by encapsulating LNF inside reduced graphene oxide‐ethyl cellulose. This novel hybrid material does not ignite upon exposure to air. This proposed hybrid material could be the ultimate choice for air‐stable and safe storage for fuel cell/internal combustion engine‐based vehicles. Further, the effectiveness of this hydrogen storage material is demonstrated for fuel cells.</jats:p>

Topics
  • impedance spectroscopy
  • Hydrogen
  • combustion
  • intermetallic
  • cellulose