Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Han, Joo Hyeong

  • Google
  • 1
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Cerium‐Sensitized Highly Emissive 0D Cesium Cerium Terbium Chloride Alloy Nanocrystals for White Light Emission7citations

Places of action

Chart of shared publication
Viswanath, Noolu Srinivasa Manikanta
1 / 4 shared
Jang, Sung Woo
1 / 1 shared
Yadav, Amar Nath
1 / 2 shared
Samanta, Tuhin
1 / 2 shared
Kim, Minji
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Viswanath, Noolu Srinivasa Manikanta
  • Jang, Sung Woo
  • Yadav, Amar Nath
  • Samanta, Tuhin
  • Kim, Minji
OrganizationsLocationPeople

article

Cerium‐Sensitized Highly Emissive 0D Cesium Cerium Terbium Chloride Alloy Nanocrystals for White Light Emission

  • Viswanath, Noolu Srinivasa Manikanta
  • Jang, Sung Woo
  • Yadav, Amar Nath
  • Samanta, Tuhin
  • Han, Joo Hyeong
  • Kim, Minji
Abstract

<jats:title>Abstract</jats:title><jats:p>Recently, lanthanide‐based 0D metal halides have garnered considerable attention owing to their applications in light–emitting diodes (LEDs), X‐ray imaging, and photodetectors. Among these materials, 0D Cs<jats:sub>3</jats:sub>TbCl<jats:sub>6</jats:sub> (CTC) nanocrystals (NCs) have demonstrated promising performance in X‐ray imaging and light‐emitting diodes. However, a considerable drawback of CTC NCs is their limited absorption coefficient in the UV‐A region (315–380 nm). To address this limitation and enhance the absorption coefficient in the UV‐A region, Ce<jats:sup>3+</jats:sup> is incorporated into CTC NCs—advantageous owing to the high absorption coefficient of Ce<jats:sup>3+</jats:sup> in the UV‐A region, attributed to—<jats:italic>4f</jats:italic>‐<jats:italic>5d</jats:italic> orbital coupling. In addition, Ce<jats:sup>3+</jats:sup> ions sensitize the luminescence of CTC NCs and enhance the photoluminescence quantum yield from 75% to 87%. Energy transfer from Ce<jats:sup>3+</jats:sup> to Tb<jats:sup>3+</jats:sup> is investigated at different dopant ratios. Furthermore, Cs<jats:sub>3</jats:sub>CeTbCl<jats:sub>6</jats:sub> (CCTC) NCs have been utilized in white LED devices. Understanding such competitive energy transfer in lanthanide‐based perovskite‐inspired metal halides will facilitate the development of novel luminescent metal halides for lighting applications.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • photoluminescence
  • Cerium
  • Terbium