People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Petrozza, Annamaria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024How Photogenerated I 2 Induces I-Rich Phase Formation in Lead Mixed Halide Perovskitescitations
- 2024Stabilizing Single‐Source Evaporated Perovskites with Organic Interlayers for Amplified Spontaneous Emissioncitations
- 2024Mutual Destabilization of Wide Bandgap Perovskite and PbI<sub>2</sub> Inclusions through Interface Carrier Trappingcitations
- 2024Electron Spectroscopy and Microscopy: A Window into the Surface Electronic Properties of Polycrystalline Metal Halide Perovskitescitations
- 2024How Photogenerated I2 Induces I-Rich Phase Formation in Lead Mixed Halide Perovskitescitations
- 2024Understanding the Surface Chemistry of Tin Halide Perovskitescitations
- 2023Defect Engineering to Achieve Photostable Wide Bandgap Metal Halide Perovskitescitations
- 2023How Photogenerated I2 Induces I‐rich Phase Formation in Lead Mixed Halide Perovskitescitations
- 2023X‐Ray Nanoanalysis Revealing the Role of Electronically Active Passivation Layers in Perovskite X‐Ray film Detectorscitations
- 2023Tuning Structure and Excitonic Properties of 2D Ruddlesden–Popper Germanium, Tin, and Lead Iodide Perovskites via Interplay between Cationscitations
- 2023How Halide Alloying Influences the Optoelectronic Quality in Tin-Halide Perovskite Solar Absorberscitations
- 2023Structural effects on the luminescence properties of CsPbI 3 nanocrystalscitations
- 2022Photoluminescence Intensity Enhancement in Tin Halide Perovskitescitations
- 2021Coordinating Solvent-Assisted Synthesis of Phase-Stable Perovskite Nanocrystals with High Yield Production for Optoelectronic Applicationscitations
- 2021Moisture resistance in perovskite solar cells attributed to a water-splitting layercitations
- 2021High‐Sensitivity Flexible X‐Ray Detectors based on Printed Perovskite Inkscitations
- 2020Colourful luminescence of metal halide perovskites – from fundamentals to applicationscitations
- 2020Humidity-robust scalable metal halide perovskite film deposition for photovoltaic applicationscitations
- 2019Controlling competing photochemical reactions stabilizes perovskite solar cellscitations
- 2019Defect activity in lead halide perovskitescitations
- 2018Iodine chemistry determines the defect tolerance of lead-halide perovskitescitations
- 2018Interfacial Morphology Addresses Performance of Perovskite Solar Cells Based on Composite Hole Transporting Materials of Functionalized Reduced Graphene Oxide and P3HTcitations
- 2017Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cellscitations
- 2016Photoinduced emissive trap states in lead halide perovskite semiconductorscitations
- 2015Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer-layercitations
- 2015Role of microstructure in the electron–hole interaction of hybrid lead halide perovskitescitations
- 2015Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al O Buffer Layercitations
- 2014Lead-free organic–inorganic tin halide perovskites for photovoltaic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Stabilizing Single‐Source Evaporated Perovskites with Organic Interlayers for Amplified Spontaneous Emission
Abstract
<jats:title>Abstract</jats:title><jats:p>Metal halide perovskites are promising semiconductors with promising applications in optoelectronic and photonic technologies. When coherent emission applications are targeted, materials with lower lasing thresholds and increased stabilities must be developed to increase the performance under continuous wave optical pumping condition and finally allow the realization of the long sought‐after electrically pumped lasers. Perovskite multiple‐quantum‐wells (MQWs) can potentially ease the population inversion by confining photoexcitation within the heterostructure's wells, but their fabrication process and structural design still require a delicate optimization to make them valuable photonic platforms. Here, perovskite MQWs are fabricated based on organic semiconductors and CsPbBr<jats:sub>3</jats:sub>, using a facile and easily scalable sequential single‐source vacuum evaporation method. Perovskite with the organic interlayer shows radically enhanced phase stability, passivated defects, and improved radiative recombination properties. In this way, upon proper design of the heterostructure wells and barriers thicknesses, optically pumped amplified spontaneous emission can be achieved. This work reports an effective fabrication approach for perovskite MQWs, while providing a deeper understanding of their photophysical properties to foster their application as coherent light emitters.</jats:p>