People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sugimoto, Hiroshi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Evidence for intrinsic defects and nanopores as hotspots in 2D PdSe2 dendrites for plasmon-free SERS substrate with a high enhancement factorcitations
- 2023Gallium Phosphide Nanoparticles for Low‐Loss Nanoantennas in Visible Rangecitations
- 2023Formation of Fano line shapes in optical responses and spectra of internal fields of excitonic nanospheres
- 2022Computational Discovery and Experimental Demonstration of Boron Phosphide Ultraviolet Nanoresonatorscitations
- 2022Mode Hybridization in Silicon Core–Gold Shell Nanospherecitations
- 2020Triplex Glass Laminates with Silicon Quantum Dots for Luminescent Solar Concentratorscitations
Places of action
Organizations | Location | People |
---|
article
Gallium Phosphide Nanoparticles for Low‐Loss Nanoantennas in Visible Range
Abstract
Colloidal nanoparticles of gallium phosphide (GaP) with moderately high refractive index (n > 3) and a small extinction coefficient in the visible range are developed using a combination of mechanical milling and a pulsed laser melting process in solution. The combined process yields GaP nanoparticles with an almost spherical shape and the smooth surface. The single particle scattering spectroscopy reveals that smoothening of the surface by the pulsed laser melting process is crucial for achieving distinctive Mie resonances of the dipolar and higher-order modes in the visible range. The near-field profile at the Mie resonances studied by electron energy loss spectroscopy in a scanning transmission electron microscope confirms the existence of the magnetic dipole mode. Finally, the Purcell enhancement of fluorescence of molecules on the surface due to the Mie resonances is demonstrated.