Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tumen-Ulzii, Ganbaatar

  • Google
  • 5
  • 27
  • 70

University of Cambridge

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023The Electronic Disorder Landscape of Mixed Halide Perovskites23citations
  • 2023Artificial p–n‐like Junction Based on Pure 2D Organic–Inorganic Halide Perovskite Structure Having Naphthalene Diimide Acceptor Moieties12citations
  • 2023Artificial p–n‐like Junction Based on Pure 2D Organic–Inorganic Halide Perovskite Structure Having Naphthalene Diimide Acceptor Moieties12citations
  • 2023The Electronic Disorder Landscape of Mixed Halide Perovskites.citations
  • 2022The Electronic Disorde Landscape of Mixed Halide Perovskites23citations

Places of action

Chart of shared publication
Banon, Jean-Philippe
3 / 3 shared
Filoche, Marcel
3 / 3 shared
Friend, Richard
1 / 6 shared
Frohna, Kyle
3 / 35 shared
Chiang, Yu-Hsien
3 / 16 shared
Stranks, Samuel
1 / 7 shared
Liu, Yun
3 / 16 shared
Mathevet, Fabrice
2 / 11 shared
Chamoreau, Lisemarie
2 / 5 shared
Harrington, George
1 / 12 shared
Ribierre, Jean Charles
1 / 5 shared
Sosa Vargas, Lydia
2 / 4 shared
Imaoka, Kentaro
2 / 3 shared
Feng, Zhao
2 / 2 shared
Adachi, Chihaya
2 / 11 shared
Zhou, Guijiang
2 / 2 shared
Liu, Xuelong
2 / 2 shared
Heinrich, Benoît
2 / 12 shared
Kreher, David
2 / 7 shared
Matsushima, Toshinori
2 / 5 shared
Ishii, Tomohiro
2 / 2 shared
Tang, Xun
1 / 1 shared
Harrington, George F.
1 / 2 shared
Ribierre, Jeancharles
1 / 1 shared
Goushi, Kenichi
1 / 1 shared
Stranks, Samuel D.
2 / 101 shared
Friend, Richard H.
2 / 48 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Banon, Jean-Philippe
  • Filoche, Marcel
  • Friend, Richard
  • Frohna, Kyle
  • Chiang, Yu-Hsien
  • Stranks, Samuel
  • Liu, Yun
  • Mathevet, Fabrice
  • Chamoreau, Lisemarie
  • Harrington, George
  • Ribierre, Jean Charles
  • Sosa Vargas, Lydia
  • Imaoka, Kentaro
  • Feng, Zhao
  • Adachi, Chihaya
  • Zhou, Guijiang
  • Liu, Xuelong
  • Heinrich, Benoît
  • Kreher, David
  • Matsushima, Toshinori
  • Ishii, Tomohiro
  • Tang, Xun
  • Harrington, George F.
  • Ribierre, Jeancharles
  • Goushi, Kenichi
  • Stranks, Samuel D.
  • Friend, Richard H.
OrganizationsLocationPeople

article

Artificial p–n‐like Junction Based on Pure 2D Organic–Inorganic Halide Perovskite Structure Having Naphthalene Diimide Acceptor Moieties

  • Mathevet, Fabrice
  • Chamoreau, Lisemarie
  • Tumen-Ulzii, Ganbaatar
  • Harrington, George
  • Ribierre, Jean Charles
  • Sosa Vargas, Lydia
  • Imaoka, Kentaro
  • Feng, Zhao
  • Adachi, Chihaya
  • Zhou, Guijiang
  • Liu, Xuelong
  • Heinrich, Benoît
  • Kreher, David
  • Matsushima, Toshinori
  • Ishii, Tomohiro
Abstract

<jats:title>Abstract</jats:title><jats:p>2D organic–inorganic perovskites are an emerging class of materials with great potential for optoelectronics since a wide variety of large functional chromophores can be regularly incorporated. Among this new type of materials, hybrid perovskite systems incorporating strong electron acceptor molecules are considered as a promising approach to designing a new type of functional 2D perovskites for optoelectronics. In this work, a rare example of organic–inorganic 2D perovskite incorporating strong acceptors such as naphthalene diimide (NDI) building blocks between inorganic sheets is presented. This hybrid architecture forms highly air‐stable thin films with a structure consisting of inorganic perovskite monolayers of metal‐halide octahedra separated by bilayers of NDI‐based organic cations. The presence of strong electron‐accepting moieties in this multifunctional donor–acceptor hybrid heterostructure leads to a rare type II heterojunction in which the excitons can be efficiently dissociated via the electron‐transfer process and in which holes and electrons can be easily confined in the inorganic and organic sublayers, respectively. Such an ultimate p–n heterojunction shows improved photoconduction properties with a photocurrent multiplied by ≈40 under white‐light illumination in comparison to a similar 2D perovskite structure containing optically and electrically inert alkyl chains as organic components.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • thin film