Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ribierre, Jean Charles

  • Google
  • 5
  • 41
  • 82

University of St Andrews

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Artificial p–n‐like Junction Based on Pure 2D Organic–Inorganic Halide Perovskite Structure Having Naphthalene Diimide Acceptor Moieties12citations
  • 2018Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilon‐Near‐Zero Organic Thin Films49citations
  • 2012Nanosecond two-photon absorption and lasing in fluorene-based organic semiconductorscitations
  • 2011Influence of gate dielectric on the ambipolar characteristics of solution-processed organic field-effect transistors13citations
  • 2006Influence of the average molecular weight and the concentration of plasticizer on the orientational dynamics of chromophores in guest-host polymers8citations

Places of action

Chart of shared publication
Mathevet, Fabrice
2 / 11 shared
Chamoreau, Lisemarie
1 / 5 shared
Tumen-Ulzii, Ganbaatar
1 / 5 shared
Harrington, George
1 / 12 shared
Sosa Vargas, Lydia
1 / 4 shared
Imaoka, Kentaro
1 / 3 shared
Feng, Zhao
1 / 2 shared
Adachi, Chihaya
1 / 11 shared
Zhou, Guijiang
1 / 2 shared
Liu, Xuelong
1 / 2 shared
Heinrich, Benoît
1 / 12 shared
Kreher, David
1 / 7 shared
Matsushima, Toshinori
1 / 5 shared
Ishii, Tomohiro
1 / 2 shared
Jun, Young Chul
1 / 1 shared
Woo, Byung Hoon
1 / 1 shared
Kita, Hanayo
1 / 1 shared
Yoon, Seokhyun
1 / 1 shared
Lee, Kwang Jin
1 / 1 shared
Chae, Sang Min
1 / 1 shared
Daléo, Anthony
1 / 3 shared
Garoni, Eleonora
1 / 1 shared
Kamada, Kenji
1 / 2 shared
Lee, Yeon Ui
1 / 1 shared
Kim, Hyo Jung
1 / 2 shared
Choi, Eunyoung
1 / 6 shared
Ozerov, Igor
1 / 9 shared
Burn, Paul L.
1 / 20 shared
Samuel, Ifor D. W.
1 / 31 shared
Tsiminis, Georgios
1 / 4 shared
Turnbull, Graham A.
1 / 7 shared
Ruseckas, Arvydas
1 / 20 shared
Richards, Gary J.
1 / 2 shared
Takaishi, K.
1 / 1 shared
Muto, T.
1 / 1 shared
Ghosh, S.
1 / 67 shared
Aoyama, T.
1 / 2 shared
Méry, S.
1 / 3 shared
Fort, A.
1 / 4 shared
Mager, L.
1 / 2 shared
Gillot, F.
1 / 1 shared
Chart of publication period
2023
2018
2012
2011
2006

Co-Authors (by relevance)

  • Mathevet, Fabrice
  • Chamoreau, Lisemarie
  • Tumen-Ulzii, Ganbaatar
  • Harrington, George
  • Sosa Vargas, Lydia
  • Imaoka, Kentaro
  • Feng, Zhao
  • Adachi, Chihaya
  • Zhou, Guijiang
  • Liu, Xuelong
  • Heinrich, Benoît
  • Kreher, David
  • Matsushima, Toshinori
  • Ishii, Tomohiro
  • Jun, Young Chul
  • Woo, Byung Hoon
  • Kita, Hanayo
  • Yoon, Seokhyun
  • Lee, Kwang Jin
  • Chae, Sang Min
  • Daléo, Anthony
  • Garoni, Eleonora
  • Kamada, Kenji
  • Lee, Yeon Ui
  • Kim, Hyo Jung
  • Choi, Eunyoung
  • Ozerov, Igor
  • Burn, Paul L.
  • Samuel, Ifor D. W.
  • Tsiminis, Georgios
  • Turnbull, Graham A.
  • Ruseckas, Arvydas
  • Richards, Gary J.
  • Takaishi, K.
  • Muto, T.
  • Ghosh, S.
  • Aoyama, T.
  • Méry, S.
  • Fort, A.
  • Mager, L.
  • Gillot, F.
OrganizationsLocationPeople

article

Artificial p–n‐like Junction Based on Pure 2D Organic–Inorganic Halide Perovskite Structure Having Naphthalene Diimide Acceptor Moieties

  • Mathevet, Fabrice
  • Chamoreau, Lisemarie
  • Tumen-Ulzii, Ganbaatar
  • Harrington, George
  • Ribierre, Jean Charles
  • Sosa Vargas, Lydia
  • Imaoka, Kentaro
  • Feng, Zhao
  • Adachi, Chihaya
  • Zhou, Guijiang
  • Liu, Xuelong
  • Heinrich, Benoît
  • Kreher, David
  • Matsushima, Toshinori
  • Ishii, Tomohiro
Abstract

<jats:title>Abstract</jats:title><jats:p>2D organic–inorganic perovskites are an emerging class of materials with great potential for optoelectronics since a wide variety of large functional chromophores can be regularly incorporated. Among this new type of materials, hybrid perovskite systems incorporating strong electron acceptor molecules are considered as a promising approach to designing a new type of functional 2D perovskites for optoelectronics. In this work, a rare example of organic–inorganic 2D perovskite incorporating strong acceptors such as naphthalene diimide (NDI) building blocks between inorganic sheets is presented. This hybrid architecture forms highly air‐stable thin films with a structure consisting of inorganic perovskite monolayers of metal‐halide octahedra separated by bilayers of NDI‐based organic cations. The presence of strong electron‐accepting moieties in this multifunctional donor–acceptor hybrid heterostructure leads to a rare type II heterojunction in which the excitons can be efficiently dissociated via the electron‐transfer process and in which holes and electrons can be easily confined in the inorganic and organic sublayers, respectively. Such an ultimate p–n heterojunction shows improved photoconduction properties with a photocurrent multiplied by ≈40 under white‐light illumination in comparison to a similar 2D perovskite structure containing optically and electrically inert alkyl chains as organic components.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • thin film