People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borisov, Sergey
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Transition metal azahemiporphycenes as singlet oxygen sensitizerscitations
- 2023Bright and Photostable TADF-Emitting Zirconium(IV) Pyridinedipyrrolide Complexes: Efficient Dyes for Decay Time-Based Temperature Sensing and Imagingcitations
- 2022Materials for optical oxygen sensing under high hydrostatic pressurecitations
- 2022Porous matrix materials in optical sensing of gaseous oxygencitations
- 2019High-resolution optical pH imaging of concrete exposed to chemically corrosive environmentscitations
- 2018Wide-range optical pH imaging of cementitious materials exposed to chemically corrosive environmentscitations
- 2018Mn4+-Doped magnesium titanate-a promising phosphor for self-referenced optical temperature sensingcitations
- 2018OPTICAL PH IMAGING OF CONCRETE EXPOSED TO CHEMICALLY CORROSIVE ENVIRONMENTS
- 2018Macroporous Polymeric Oxygen Scavenger Material
- 2018New opportunities for optical temperature sensing with Mn<sup>4+</sup>-doped magnesium titanate
- 2013Tuning the dynamic range and sensitivity of optical oxygen-sensors by employing differently substituted polystyrene-derivativescitations
Places of action
Organizations | Location | People |
---|
article
Bright and Photostable TADF-Emitting Zirconium(IV) Pyridinedipyrrolide Complexes: Efficient Dyes for Decay Time-Based Temperature Sensing and Imaging
Abstract
Luminescence thermometry represents a technique of choice for measurements in small objects and imaging of temperature distribution. However, most state-of-the-art luminescent probes are limited in spectral characteristics, brightness, photostability, and sensitivity. Molecular thermometers of the new generation utilizing air and moisture-stable zirconium(IV) pyridinedipyrrolide complexes can address all these limitations. The dyes emit pure thermally activated delayed fluorescence without any prompt fluorescence and show a unique combination of attractive features: a) visible light excitation and emission in the orange/red region, b) high luminescence brightness (quantum yields ≈0.5 in toluene and 0.8–1.0 in polystyrene matrix), c) excellent photostability, d) suitability for two-photon excitation and e) mono-exponential decay on the order of tens to hundreds of microseconds with strongly temperature-dependent lifetimes (between −2.5 and −2.9% K−1 in polystyrene at 25 °C). Immobilization in gas-blocking polymers yields sensing materials for self-referenced decay time read-out that are manufactured in two common formats: planar optodes and water-dispersible nanoparticles. Positively charged nanoparticles are demonstrated to be suitable for nanothermometry in live cells and multicellular spheroids. Negatively charged nanoparticles represent advanced analytical tools for imaging temperature gradients in samples of small volumes such as microfluidic devices.