People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tao, Shuxia
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Probing the Reactivity of ZnO with Perovskite Precursorscitations
- 2024Temperature-Dependent Chirality in Halide Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023The role of sulfur in sulfur-doped copper(I) iodide p-type transparent conductorscitations
- 2023Calculating the Circular Dichroism of Chiral Halide Perovskites:A Tight-Binding Approachcitations
- 2023Effect of the Precursor Chemistry on the Crystallization of Triple Cation Mixed Halide Perovskitescitations
- 2023Calculating the Circular Dichroism of Chiral Halide Perovskitescitations
- 2022Decomposition of Organic Perovskite Precursors on MoO 3 :Role of Halogen and Surface Defectscitations
- 2022Decomposition of Organic Perovskite Precursors on MoO3citations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskites:Insights from Reactive Molecular Dynamics Simulations of CsPbI 3citations
- 2022Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principlescitations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskitescitations
- 2021Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Bindingcitations
- 2021Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3citations
- 2021Stretchable AgX (X = Se, Te) for Efficient Thermoelectrics and Photovoltaicscitations
- 2021Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3:A Reactive Force Field Molecular Dynamics Studycitations
- 2021Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Binding:GFN1-xTB Methodcitations
- 2020Dopant site in indium-doped SrTiO3 photocatalystscitations
- 2020Dopant site in indium-doped SrTiO 3 photocatalystscitations
- 2020Efficient modelling of ion structure and dynamics in inorganic metal halide perovskitescitations
- 2019Absolute energy level positions in tin- and lead-based halide perovskitescitations
- 2019Efficient intraband hot carrier relaxation in Sn and Pb perovskite semiconductors mediated by strong electron-phonon couplingcitations
- 2018Efficient intraband hot carrier relaxation in the Perovskite semiconductor Cs1- xRbxSnI3 mediated by strong electron-phonon couplingcitations
- 2018Partially replacing Pb2+ by Mn2+ in hybrid metal halide perovskitescitations
- 2018Partially replacing Pb 2+ by Mn 2+ in hybrid metal halide perovskites:Structural and electronic propertiescitations
- 2018Cs1−xRbxSnI3 light harvesting semiconductors for perovskite photovoltaicscitations
- 2018Probing the occupied and unoccupied density of states of hybrid Perovskites
- 2018Cs 1-: X Rb x SnI 3 light harvesting semiconductors for perovskite photovoltaicscitations
- 2014Electron emission processes in photocathodes and dynodescitations
- 2011DFT studies of hydrogen storage properties of Mg0.75Ti0.25citations
- 2010Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powdercitations
- 2008Cubic MgH2 stabilized by alloying with transition metals : a density functional theory studycitations
Places of action
Organizations | Location | People |
---|
article
Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskites
Abstract
<p>Low-dimensional halide perovskites with broad emission are a hot topic for their promising application as white light sources. However, the physical origin of this broadband emission in the sub-bandgap region is still controversial. This work investigates the broad Stokes-shifted emission bands in mixed lead-tin 2D perovskite films prepared by mixing precursor solutions of phenethylammonium lead iodide (PEA<sub>2</sub>PbI<sub>4</sub>, PEA = phenethylammonium) and phenethylammonium tin iodide (PEA<sub>2</sub>SnI<sub>4</sub>). The bandgap can be tuned by the lead-tin ratio, whereas the photoluminescence is broad and significantly Stokes-shifted and appears to be fairly insensitive to the relative amount of Pb and Sn. It is experimentally observed that these low-dimensional systems show substantially less bandgap bowing than their 3D counterpart. Theoretically, this can be attributed to the smaller spin–orbit coupling effect on the 2D perovskites compared to that of 3D ones. The time-resolved photoluminescence shows an ultrafast decay in the high-energy range of the spectra that coincides with the emission range of PEA<sub>2</sub>SnI<sub>4</sub>, while the broadband emission decay is slower, up to the microsecond range. Sub-gap photoexcitation experiments exclude exciton self-trapping as the origin of the broadband emission, pointing to defects as the origin of the broadband emission in 2D Sn/Pb perovskite alloys.</p>