People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tekelenburg, Eelco K.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Cation Influence on Hot-Carrier Relaxation in Tin Triiodide Perovskite Thin Filmscitations
- 2024Quasi-2D Lead–Tin Perovskite Memory Devices Fabricated by Blade Coatingcitations
- 2024Mechanism of Hot-Carrier Photoluminescence in Sn-Based Perovskitescitations
- 2024Metal-Solvent Complex Formation at the Surface of InP Colloidal Quantum Dotscitations
- 2023The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2023The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Impact of two diammonium cations on the structure and photophysics of layered Sn-based perovskitescitations
- 2022The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2022The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processescitations
- 2022The Origin of Broad Emission in ⟨100»Two-Dimensional Perovskites:Extrinsic vs Intrinsic Processescitations
- 2022The Origin of Broad Emission in â ¨100»Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes
- 2020Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskitescitations
Places of action
Organizations | Location | People |
---|
article
Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskites
Abstract
<p>Low-dimensional halide perovskites with broad emission are a hot topic for their promising application as white light sources. However, the physical origin of this broadband emission in the sub-bandgap region is still controversial. This work investigates the broad Stokes-shifted emission bands in mixed lead-tin 2D perovskite films prepared by mixing precursor solutions of phenethylammonium lead iodide (PEA<sub>2</sub>PbI<sub>4</sub>, PEA = phenethylammonium) and phenethylammonium tin iodide (PEA<sub>2</sub>SnI<sub>4</sub>). The bandgap can be tuned by the lead-tin ratio, whereas the photoluminescence is broad and significantly Stokes-shifted and appears to be fairly insensitive to the relative amount of Pb and Sn. It is experimentally observed that these low-dimensional systems show substantially less bandgap bowing than their 3D counterpart. Theoretically, this can be attributed to the smaller spin–orbit coupling effect on the 2D perovskites compared to that of 3D ones. The time-resolved photoluminescence shows an ultrafast decay in the high-energy range of the spectra that coincides with the emission range of PEA<sub>2</sub>SnI<sub>4</sub>, while the broadband emission decay is slower, up to the microsecond range. Sub-gap photoexcitation experiments exclude exciton self-trapping as the origin of the broadband emission, pointing to defects as the origin of the broadband emission in 2D Sn/Pb perovskite alloys.</p>