Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Michalchuk, Adam

  • Google
  • 9
  • 69
  • 189

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Tuning energetic properties through co-crystallisation – a high-pressure experimental and computational study of nitrotriazolone3citations
  • 2023High-pressure Structural Studies and Pressure-induced Sensitisation of 3,4,5-trinitro-1H-pyrazole6citations
  • 2023Shared metadata for data-centric materials science26citations
  • 2022Dispersive x-ray absorption spectroscopy for time-resolved in situ monitoring of mechanochemical reactions13citations
  • 2022Unintended rate enhancement in mechanochemical kinetics by using poly(methyl methacrylate) jars10citations
  • 2022Plastically bendable organic crystals for monolithic and hybrid micro‐optical circuits18citations
  • 2021Monitoring mechanochemical processes in situ and in real time15citations
  • 2021High-pressure reversibility in a plastically flexible coordination polymer crystal31citations
  • 2020A Mechanistic Perspective on Plastically Flexible Coordination Polymers67citations

Places of action

Chart of shared publication
Christopher, Imogen
1 / 1 shared
Bull, Craig L.
2 / 8 shared
Morrison, Carole
2 / 2 shared
Kennedy, Stuart R.
1 / 1 shared
Portius, Peter
1 / 1 shared
Funnell, Nicholas P.
1 / 4 shared
Lloyd, Hayleigh J.
1 / 1 shared
Pulham, Colin R.
2 / 5 shared
Liu, Xiaojiao
2 / 2 shared
Konar, Sumit
1 / 2 shared
Hemingway, Jack
1 / 1 shared
Atceken, Nurunnisa
1 / 1 shared
Oliveira, Paulo F. M. De
1 / 1 shared
Buzanich, Ana Guilherme
1 / 5 shared
Emmerling, Franziska
6 / 59 shared
Haider, M. Bilal
1 / 2 shared
Radtke, Martin
1 / 15 shared
Cakir, Cafer T.
1 / 1 shared
Linberg, Kevin
1 / 1 shared
Ravi, Jada
1 / 3 shared
Bhattacharya, Biswajit
3 / 9 shared
Feiler, Torvid
2 / 5 shared
Mondal, Amit
1 / 1 shared
Reddy, C. Malla
1 / 3 shared
Chandrasekar, Rajadurai
1 / 3 shared
Kabelitz, Anke
1 / 8 shared
Liu, X.
1 / 54 shared
Pulham, C.
1 / 3 shared
Rautenberg, Max
1 / 4 shared
Sturm, Heinz
1 / 38 shared
Reimann, K.
1 / 10 shared
Paulus, B.
1 / 1 shared
Schmid, Thomas
1 / 6 shared
Silbernagl, Dorothee
1 / 19 shared
Ghalgaoui, A.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Christopher, Imogen
  • Bull, Craig L.
  • Morrison, Carole
  • Kennedy, Stuart R.
  • Portius, Peter
  • Funnell, Nicholas P.
  • Lloyd, Hayleigh J.
  • Pulham, Colin R.
  • Liu, Xiaojiao
  • Konar, Sumit
  • Hemingway, Jack
  • Atceken, Nurunnisa
  • Oliveira, Paulo F. M. De
  • Buzanich, Ana Guilherme
  • Emmerling, Franziska
  • Haider, M. Bilal
  • Radtke, Martin
  • Cakir, Cafer T.
  • Linberg, Kevin
  • Ravi, Jada
  • Bhattacharya, Biswajit
  • Feiler, Torvid
  • Mondal, Amit
  • Reddy, C. Malla
  • Chandrasekar, Rajadurai
  • Kabelitz, Anke
  • Liu, X.
  • Pulham, C.
  • Rautenberg, Max
  • Sturm, Heinz
  • Reimann, K.
  • Paulus, B.
  • Schmid, Thomas
  • Silbernagl, Dorothee
  • Ghalgaoui, A.
OrganizationsLocationPeople

article

Plastically bendable organic crystals for monolithic and hybrid micro‐optical circuits

  • Ravi, Jada
  • Bhattacharya, Biswajit
  • Michalchuk, Adam
  • Feiler, Torvid
  • Emmerling, Franziska
  • Mondal, Amit
  • Reddy, C. Malla
  • Chandrasekar, Rajadurai
Abstract

Fluorescent plastically bendable crystals are a promising alternative to silicon-based materials for fabricating photonic integrated circuits, owing to their optical attributes and mechanical compliance. Mechanically bendable plastic organic crystals are rare. Their formation requires anisotropic intermolecular interactions and slip planes in the crystal lattice. This work presents three fluorescent plastically bendable crystalline materials namely, 2-((E)-(6-methylpyridin-2-ylimino)methyl)-4-chlorophenol (SB1), 2-((E)-(6-methylpyridin-2-ylimino)methyl)-4-bromophenol (SB2), and 2-((E)-(6-Bromopyridin-2-ylimino)methyl)-4-bromophenol (SB3) molecules. The crystal plasticity in response to mechanical stress facilitates the fabrication of various monolithic and hybrid (with a tip-to-tip coupling) photonic circuits using mechanical micromanipulation with an atomic force microscope cantilever tip. These plastically bendable crystals act as active (self-guiding of fluorescence) and passive waveguides both in straight and extremely bent (U-, J-, and O-shaped) geometries. These microcircuits use active and passive waveguiding principles and reabsorbance and energy-transfer mechanisms for their operation, allowing input-selective and direction-specific signal transduction.

Topics
  • polymer
  • anisotropic
  • Silicon
  • plasticity
  • crystal plasticity
  • crystalline lattice