Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kalfagiannis, Nikolaos

  • Google
  • 10
  • 59
  • 226

University of Ioannina

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Short review and prospective: chalcogenide glass mid-infrared fibre lasers4citations
  • 2023(INVITED) Mid-infrared photoluminescence in Ce 3+ doped selenide-chalcogenide glass and fiber6citations
  • 2022Photo-engineered optoelectronic properties of indium tin oxide via reactive laser annealing6citations
  • 2022Room temperature phase transition of W-doped VO 2 by atomic layer deposition on 200 mm Si wafers and flexible substrates40citations
  • 2022Reactive laser annealing of indium tin oxide: implications to crystal structure, defect composition, and plasma energy3citations
  • 2022Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substrates40citations
  • 20203D-to-2D morphology manipulation of sputter-deposited nanoscale silver films on weakly interacting substrates via selective nitrogen deployment for multifunctional metal contacts44citations
  • 2014Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles14citations
  • 2014High performance transistors based on the controlled growth of triisopropylsilylethynyl-pentacene crystals via non-isotropic solvent evaporation28citations
  • 2012Novel nanostructured biomaterials: implications for coronary stent thrombosis.41citations

Places of action

Chart of shared publication
Seddon, Angela B.
2 / 14 shared
Furniss, David
2 / 22 shared
Nunes, Joel J.
2 / 2 shared
Barney, Emma
1 / 8 shared
Farries, Mark
1 / 2 shared
Chahal, Shweta
1 / 1 shared
Xiao, Boyu
1 / 1 shared
Sujecki, Slawomir
2 / 10 shared
Phang, Sendy
1 / 1 shared
Sojka, Łukasz
1 / 1 shared
Benson, Trevor M.
1 / 10 shared
Sójka, Łukasz
1 / 1 shared
Tang, Zhuoqi
1 / 13 shared
Crane, Richard W.
1 / 1 shared
Farries, Mark C.
1 / 1 shared
Cranton, Wayne
2 / 3 shared
Nabok, Av
2 / 2 shared
Patsalas, Panos
3 / 7 shared
Camelio, Sophie
1 / 6 shared
Koutsogeorgis, Demosthenes, C.
1 / 1 shared
Hillier, James, Arthur
1 / 2 shared
Karfaridis, Dimitrios
1 / 1 shared
Mellor, Cj
2 / 2 shared
Muskens, Otto L.
1 / 2 shared
Urbani, Alessandro
2 / 4 shared
Hillier, James A.
2 / 2 shared
De Groot, Cornelis H.
1 / 1 shared
Sun, Kai
2 / 7 shared
Ye, Sheng
2 / 4 shared
Zeimpekis, Ioannis
2 / 24 shared
Wheeler, Callum
2 / 5 shared
Karfardis, Dimitrios
1 / 1 shared
Koutsogeorgis, Demosthenes C.
1 / 1 shared
Hillier, James Arthur
1 / 1 shared
De Groot, Cornelis
1 / 41 shared
Muskens, Otto
1 / 6 shared
Konpan, Martin
1 / 1 shared
Bellas, Dv
1 / 3 shared
Greene, Joseph E.
1 / 30 shared
Abadias, Gregory
1 / 14 shared
Sarakinos, Kostas
1 / 37 shared
Lu, Jun
1 / 78 shared
Kotanidis, An
1 / 1 shared
Kehagias, Thomas
1 / 2 shared
Jamnig, Andreas
1 / 7 shared
Kovac, Janez
1 / 5 shared
Petrov, Ivan
1 / 55 shared
Pliatsikas, Nikolaos
1 / 7 shared
Lidorikis, Elefterios
1 / 4 shared
Panagiotopoulos, N. T.
1 / 6 shared
Karagiannidis, Panagiotis
3 / 22 shared
Logothetidis, Stergios
3 / 8 shared
Hastas, N. A.
2 / 2 shared
Kapnopoulos, C.
1 / 2 shared
Ioakeimidis, Apostolos
1 / 2 shared
Karagkiozaki, Varvara
1 / 3 shared
Kavatzikidou, Paraskevi
1 / 3 shared
Patsalas, Panagiotis
1 / 1 shared
Georgiou, Despoina
1 / 2 shared
Chart of publication period
2024
2023
2022
2020
2014
2012

Co-Authors (by relevance)

  • Seddon, Angela B.
  • Furniss, David
  • Nunes, Joel J.
  • Barney, Emma
  • Farries, Mark
  • Chahal, Shweta
  • Xiao, Boyu
  • Sujecki, Slawomir
  • Phang, Sendy
  • Sojka, Łukasz
  • Benson, Trevor M.
  • Sójka, Łukasz
  • Tang, Zhuoqi
  • Crane, Richard W.
  • Farries, Mark C.
  • Cranton, Wayne
  • Nabok, Av
  • Patsalas, Panos
  • Camelio, Sophie
  • Koutsogeorgis, Demosthenes, C.
  • Hillier, James, Arthur
  • Karfaridis, Dimitrios
  • Mellor, Cj
  • Muskens, Otto L.
  • Urbani, Alessandro
  • Hillier, James A.
  • De Groot, Cornelis H.
  • Sun, Kai
  • Ye, Sheng
  • Zeimpekis, Ioannis
  • Wheeler, Callum
  • Karfardis, Dimitrios
  • Koutsogeorgis, Demosthenes C.
  • Hillier, James Arthur
  • De Groot, Cornelis
  • Muskens, Otto
  • Konpan, Martin
  • Bellas, Dv
  • Greene, Joseph E.
  • Abadias, Gregory
  • Sarakinos, Kostas
  • Lu, Jun
  • Kotanidis, An
  • Kehagias, Thomas
  • Jamnig, Andreas
  • Kovac, Janez
  • Petrov, Ivan
  • Pliatsikas, Nikolaos
  • Lidorikis, Elefterios
  • Panagiotopoulos, N. T.
  • Karagiannidis, Panagiotis
  • Logothetidis, Stergios
  • Hastas, N. A.
  • Kapnopoulos, C.
  • Ioakeimidis, Apostolos
  • Karagkiozaki, Varvara
  • Kavatzikidou, Paraskevi
  • Patsalas, Panagiotis
  • Georgiou, Despoina
OrganizationsLocationPeople

article

Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substrates

  • Urbani, Alessandro
  • Hillier, James A.
  • Kalfagiannis, Nikolaos
  • De Groot, Cornelis
  • Sun, Kai
  • Ye, Sheng
  • Muskens, Otto
  • Zeimpekis, Ioannis
  • Wheeler, Callum
Abstract

<p>The unique structural transition of VO<sub>2</sub> between dielectric and metallic phases has significant potential in optical and electrical applications ranging from volatile switches and neuromorphic computing to smart devices for thermochromic control and radiative cooling. Critical condition for their widespread implementation is scalable deposition method and reduction of the phase transition to near room temperature. Here, a W:VO<sub>2</sub> process based on atomic layer deposition (ALD) is presented that enables precise control of W-doping at the few percent level, resulting in a viable controllable process with sufficient W incorporation into VO<sub>2</sub> to reduce the phase transition to room temperature. It is demonstrated that the incorporation of 1.63 at.% W through ALD growth leads to a state-of-the-art phase transition at 32 °C with emissivity contrast between the low-temperature and high-temperature phase exceeding 40% in a metasurface-based radiative cooling device configuration. The process is shown to be viable on 200 mm silicon substrates as well as flexible polyimide films. The full and self-consistent temperature-dependent characterization of the W-doped VO<sub>2</sub> using spectroscopic ellipsometry, electrical conductivity, mid-wave infrared camera, and Fourier transform infrared emissivity, allows for a fully validated material model for the theoretical design of various smart and switchable device applications.</p>

Topics
  • impedance spectroscopy
  • phase
  • phase transition
  • Silicon
  • ellipsometry
  • electrical conductivity
  • atomic layer deposition