Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chung, Juil

  • Google
  • 1
  • 16
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Enhancing and Extinguishing the Different Emission Features of 2D (EA<sub>1−</sub><i><sub>x</sub></i>FA<i><sub>x</sub></i>)<sub>4</sub>Pb<sub>3</sub>Br<sub>10</sub> Perovskite Films3citations

Places of action

Chart of shared publication
Kanatzidis, Mercouri G.
1 / 16 shared
Kennard, Rhiannon M.
1 / 1 shared
Seshadri, Ram
1 / 10 shared
Cotts, Benjamin L.
1 / 3 shared
Mohtashami, Yahya
1 / 1 shared
Decrescent, Ryan A.
1 / 1 shared
Schaller, Richard
1 / 10 shared
Panuganti, Shobhana
1 / 2 shared
Dahlman, Clayton
1 / 1 shared
Stone, Kevin H.
1 / 7 shared
Morgan, Emily
1 / 2 shared
Kincaid, Joseph
1 / 1 shared
Schuller, Jon
1 / 1 shared
Chabinyc, Michael L.
1 / 4 shared
Mao, Lingling
1 / 9 shared
Salleo, Alberto
1 / 38 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Kanatzidis, Mercouri G.
  • Kennard, Rhiannon M.
  • Seshadri, Ram
  • Cotts, Benjamin L.
  • Mohtashami, Yahya
  • Decrescent, Ryan A.
  • Schaller, Richard
  • Panuganti, Shobhana
  • Dahlman, Clayton
  • Stone, Kevin H.
  • Morgan, Emily
  • Kincaid, Joseph
  • Schuller, Jon
  • Chabinyc, Michael L.
  • Mao, Lingling
  • Salleo, Alberto
OrganizationsLocationPeople

article

Enhancing and Extinguishing the Different Emission Features of 2D (EA<sub>1−</sub><i><sub>x</sub></i>FA<i><sub>x</sub></i>)<sub>4</sub>Pb<sub>3</sub>Br<sub>10</sub> Perovskite Films

  • Kanatzidis, Mercouri G.
  • Kennard, Rhiannon M.
  • Seshadri, Ram
  • Cotts, Benjamin L.
  • Mohtashami, Yahya
  • Chung, Juil
  • Decrescent, Ryan A.
  • Schaller, Richard
  • Panuganti, Shobhana
  • Dahlman, Clayton
  • Stone, Kevin H.
  • Morgan, Emily
  • Kincaid, Joseph
  • Schuller, Jon
  • Chabinyc, Michael L.
  • Mao, Lingling
  • Salleo, Alberto
Abstract

<jats:title>Abstract</jats:title><jats:p>2D hybrid perovskites are attractive for optoelectronic devices. In thin films, the color of optical emission and the texture of crystalline domains are often difficult to control. Here, a method for extinguishing or enhancing different emission features is demonstrated for the family of 2D Ruddlesden–Popper perovskites (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub> (EA = ethylammonium, FA = formamidinium). When grown from aqueous hydrobromic acid, crystals of (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub> retain all the emission features of their parent compound, (EA)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>. Surprisingly, when grown from dimethylformamide (DMF), an emission feature, likely self‐trapped exciton (STE), near 2.7 eV is missing. Extinction of this feature is correlated with DMF being incorporated between the 2D Pb‐Br sheets, forming (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>∙(DMF)<jats:italic><jats:sub>y</jats:sub></jats:italic>. Without FA, films grown from DMF form (EA)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>, retain little solvent, and have strong emission near 2.7 eV. Slowing the kinetics of film growth strengthens a different emission feature, likely a different type of STE, which is much broader and present in all compositions. Films of (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>∙(DMF)<jats:italic><jats:sub>y</jats:sub></jats:italic> have large, micron‐sized domains and homogeneous orientation of the semiconducting sheets, resulting in low electronic disorder near the absorption edge. The ability to selectively strengthen or extinguish different emission features in films of (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>∙(DMF)<jats:italic><jats:sub>y</jats:sub></jats:italic> reveals a pathway to tune the emission color in these compounds.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • compound
  • thin film
  • texture
  • forming
  • elemental analysis