People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schaller, Richard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Structural Evolution and Photoluminescence Quenching across the FASnI3–xBrx (x = 0–3) Perovskitescitations
- 2022Enhancing and Extinguishing the Different Emission Features of 2D (EA<sub>1−</sub><i><sub>x</sub></i>FA<i><sub>x</sub></i>)<sub>4</sub>Pb<sub>3</sub>Br<sub>10</sub> Perovskite Filmscitations
- 2022Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities
- 2022Non-Equilibrium Lattice Dynamics in Photo-Excited Two-Dimensional Perovskitescitations
- 2021Tunable broad light emission from 3D "Hollow" Bromide Perovskites through Defect Engineeringcitations
- 2020Systematic study of shockley-read-hall and radiative recombination in GaN on Al<sub>2</sub>O<sub>3</sub>, freestanding GaN, and GaN on Sicitations
- 2020Three-dimensional Lead Iodide Perovskitoid Hybrids with High X-ray Photoresponsecitations
- 2020Organic Cation Alloying on Intralayer A and Interlayer A’ sites in 2D Hybrid Dion-Jacobson Lead Bromide Perovskites (A’)(A)Pb2Br7citations
- 2020Negative Pressure Engineering with Large Cage Cations in 2D Halide Perovskites Causes Lattice Softeningcitations
- 2020Water Stable 1D Hybrid Tin(II) Iodide Emits Broad Light with 36% Photoluminescence Quantum Efficiencycitations
Places of action
Organizations | Location | People |
---|
article
Enhancing and Extinguishing the Different Emission Features of 2D (EA<sub>1−</sub><i><sub>x</sub></i>FA<i><sub>x</sub></i>)<sub>4</sub>Pb<sub>3</sub>Br<sub>10</sub> Perovskite Films
Abstract
<jats:title>Abstract</jats:title><jats:p>2D hybrid perovskites are attractive for optoelectronic devices. In thin films, the color of optical emission and the texture of crystalline domains are often difficult to control. Here, a method for extinguishing or enhancing different emission features is demonstrated for the family of 2D Ruddlesden–Popper perovskites (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub> (EA = ethylammonium, FA = formamidinium). When grown from aqueous hydrobromic acid, crystals of (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub> retain all the emission features of their parent compound, (EA)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>. Surprisingly, when grown from dimethylformamide (DMF), an emission feature, likely self‐trapped exciton (STE), near 2.7 eV is missing. Extinction of this feature is correlated with DMF being incorporated between the 2D Pb‐Br sheets, forming (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>∙(DMF)<jats:italic><jats:sub>y</jats:sub></jats:italic>. Without FA, films grown from DMF form (EA)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>, retain little solvent, and have strong emission near 2.7 eV. Slowing the kinetics of film growth strengthens a different emission feature, likely a different type of STE, which is much broader and present in all compositions. Films of (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>∙(DMF)<jats:italic><jats:sub>y</jats:sub></jats:italic> have large, micron‐sized domains and homogeneous orientation of the semiconducting sheets, resulting in low electronic disorder near the absorption edge. The ability to selectively strengthen or extinguish different emission features in films of (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>∙(DMF)<jats:italic><jats:sub>y</jats:sub></jats:italic> reveals a pathway to tune the emission color in these compounds.</jats:p>