People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seshadri, Ram
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Structural Evolution and Photoluminescence Quenching across the FASnI3–xBrx (x = 0–3) Perovskitescitations
- 2022Tolerance Factor for Stabilizing 3D Hybrid Halide Perovskitoids Using Linear Diammonium Cationscitations
- 2022Enhancing and Extinguishing the Different Emission Features of 2D (EA<sub>1−</sub><i><sub>x</sub></i>FA<i><sub>x</sub></i>)<sub>4</sub>Pb<sub>3</sub>Br<sub>10</sub> Perovskite Filmscitations
- 2022The kagomé metals RbTi3Bi5 and CsTi3Bi5citations
- 2021Tunable broad light emission from 3D "Hollow" Bromide Perovskites through Defect Engineeringcitations
- 2020Organic Cation Alloying on Intralayer A and Interlayer A’ sites in 2D Hybrid Dion-Jacobson Lead Bromide Perovskites (A’)(A)Pb2Br7citations
- 2018Tight-Binding modeling of CsPbI3 in several perovskite phases
- 2017New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH 2 ) 3 )(CH 3 NH 3 ) n Pb n I 3 n +1 : Structure, Properties, and Photovoltaic Performancecitations
- 2017Correlating Local Compositions and Structures with the Macroscopic Optical Properties of Ce3+-Doped CaSc2O4, an Efficient Green-Emitting Phosphorcitations
- 2015Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide.
Places of action
Organizations | Location | People |
---|
article
Enhancing and Extinguishing the Different Emission Features of 2D (EA<sub>1−</sub><i><sub>x</sub></i>FA<i><sub>x</sub></i>)<sub>4</sub>Pb<sub>3</sub>Br<sub>10</sub> Perovskite Films
Abstract
<jats:title>Abstract</jats:title><jats:p>2D hybrid perovskites are attractive for optoelectronic devices. In thin films, the color of optical emission and the texture of crystalline domains are often difficult to control. Here, a method for extinguishing or enhancing different emission features is demonstrated for the family of 2D Ruddlesden–Popper perovskites (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub> (EA = ethylammonium, FA = formamidinium). When grown from aqueous hydrobromic acid, crystals of (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub> retain all the emission features of their parent compound, (EA)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>. Surprisingly, when grown from dimethylformamide (DMF), an emission feature, likely self‐trapped exciton (STE), near 2.7 eV is missing. Extinction of this feature is correlated with DMF being incorporated between the 2D Pb‐Br sheets, forming (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>∙(DMF)<jats:italic><jats:sub>y</jats:sub></jats:italic>. Without FA, films grown from DMF form (EA)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>, retain little solvent, and have strong emission near 2.7 eV. Slowing the kinetics of film growth strengthens a different emission feature, likely a different type of STE, which is much broader and present in all compositions. Films of (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>∙(DMF)<jats:italic><jats:sub>y</jats:sub></jats:italic> have large, micron‐sized domains and homogeneous orientation of the semiconducting sheets, resulting in low electronic disorder near the absorption edge. The ability to selectively strengthen or extinguish different emission features in films of (EA<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>FA<jats:italic><jats:sub>x</jats:sub></jats:italic>)<jats:sub>4</jats:sub>Pb<jats:sub>3</jats:sub>Br<jats:sub>10</jats:sub>∙(DMF)<jats:italic><jats:sub>y</jats:sub></jats:italic> reveals a pathway to tune the emission color in these compounds.</jats:p>