People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ye, Junzhi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Direct linearly polarized electroluminescence from perovskite nanoplatelet superlatticescitations
- 2023State of the Art and Prospects for Halide Perovskite Nanocrystals.
- 2022Recent Progress in Mixed A‐Site Cation Halide Perovskite Thin‐Films and Nanocrystals for Solar Cells and Light‐Emitting Diodescitations
- 2022Recent Progress in Mixed A‐Site Cation Halide Perovskite Thin‐Films and Nanocrystals for Solar Cells and Light‐Emitting Diodes
- 2022Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes.
- 2022Colloidal metal‐halide perovskite nanoplatelets: thickness‐controlled synthesis, properties, and application in light‐emitting diodescitations
- 2022Recent progress in mixed a‐site cation halide perovskite thin‐films and nanocrystals for solar cells and light‐emitting diodescitations
- 2022The effect of caesium alloying on the ultrafast structural dynamics of hybrid organic-inorganic halide perovskitescitations
- 2022Colloidal Metal‐Halide Perovskite Nanoplatelets: Thickness‐Controlled Synthesis, Properties, and Application in Light‐Emitting Diodescitations
- 2022The effect of caesium alloying on the ultrafast structural dynamics of hybrid organic–inorganic halide perovskitescitations
- 2021Defect Passivation in Lead-Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells.
- 2021Defect passivation in lead‐halide Perovskite nanocrystals and thin films: toward efficient LEDs and solar cellscitations
- 2021Understanding the Role of Grain Boundaries on Charge‐Carrier and Ion Transport in Cs 2 AgBiBr 6 Thin Films
- 2021State of the Art and Prospects for Halide Perovskite Nanocrystalscitations
- 2021Understanding the Role of Grain Boundaries on Charge‐Carrier and Ion Transport in Cs<sub>2</sub>AgBiBr<sub>6</sub> Thin Filmscitations
- 2021Defect Passivation in Lead‐Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cellscitations
- 2021State of the art and prospects for halide perovskite nanocrystalscitations
- 2021State of the art and prospects for halide perovskite nanocrystalscitations
Places of action
Organizations | Location | People |
---|
article
Recent Progress in Mixed A‐Site Cation Halide Perovskite Thin‐Films and Nanocrystals for Solar Cells and Light‐Emitting Diodes
Abstract
<jats:title>Abstract</jats:title><jats:p>Over the past few years, lead‐halide perovskites (LHPs), both in the form of bulk thin films and colloidal nanocrystals (NCs), have revolutionized the field of optoelectronics, emerging at the forefront of next‐generation optoelectronics. The power conversion efficiency (PCE) of halide perovskite solar cells has increased from 3.8% to over 25.7% over a short period of time and is very close to the theoretical limit (33.7%). At the same time, the external quantum efficiency (EQE) of perovskite LEDs has surpassed 23% and 20% for green and red emitters, respectively. Despite great progress in device efficiencies, the photoactive phase instability of perovskites is one of the major concerns for the long‐term stability of the devices and is limiting their transition to commercialization. In this regard, researchers have found that the phase stability of LHPs and the reproducibility of the device performance can be improved by A‐site cation alloying with two or more species, these are named mixed cation (double, triple, or quadruple) perovskites. This review provides a state‐of‐the‐art overview of different types of mixed A‐site cation bulk perovskite thin films and colloidal NCs reported in the literature, along with a discussion of their synthesis, properties, and progress in solar cells and LEDs.</jats:p>