People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barabash, Anastasiia
Friedrich-Alexander-Universität Erlangen-Nürnberg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Unveiling the Role of BODIPY Dyes as Small‐Molecule Hole Transport Material in Inverted Planar Perovskite Solar Cellscitations
- 2023Enhancing Planar Inverted Perovskite Solar Cells with Innovative Dumbbell‐Shaped HTMs: A Study of Hexabenzocoronene and Pyrene‐BODIPY‐Triarylamine Derivativescitations
- 2022Highly Stable Lasing from Solution‐Epitaxially Grown Formamidinium‐Lead‐Bromide Micro‐Resonatorscitations
- 2022Shape‐Controlled Solution‐Epitaxial Perovskite Micro‐Crystal Lasers Rivaling Vapor Deposited Onescitations
- 2022Ligand Tuning of Localized Surface Plasmon Resonances in Antimony-Doped Tin Oxide Nanocrystalscitations
- 2022Laser Cutting of Metal‐Halide‐Perovskite Wafers for X‐Ray Detector Integrationcitations
- 2021Characterization of Aerosol Deposited Cesium Lead Tribromide Perovskite Films on Interdigited ITO Electrodescitations
- 2021High‐Throughput Robotic Synthesis and Photoluminescence Characterization of Aqueous Multinary Copper–Silver Indium Chalcogenide Quantum Dotscitations
Places of action
Organizations | Location | People |
---|
article
Highly Stable Lasing from Solution‐Epitaxially Grown Formamidinium‐Lead‐Bromide Micro‐Resonators
Abstract
<jats:title>Abstract</jats:title><jats:p>High‐quality epitaxial growth of oriented microcrystallites on a semiconductor substrate is demonstrated here for formamidinium lead bromide perovskite, by drop casting of precursor solutions in air. The microcrystallites exhibit green photoluminescence at room temperature, as well as lasing with low thresholds. Lasing is observed even though the substrate is fully opaque at the lasing wavelengths, and even though it has a higher refractive index as the perovskite active material. Moreover, the lasing is stable for more than 10<jats:sup>9</jats:sup> excitation pulses, which is more than what is previously achieved for devices kept in the air. Such highly stable lasing under pulsed excitation represents an important step towards continuous mode operation or even electrical excitation in future perovskite‐based devices.</jats:p>