People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tsuzuki, Takuya
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Paper-Like Writable Nanoparticle Network Sheets for Mask-Less MOF Patterningcitations
- 2020Janus conductive/insulating microporous ion-sieving membranes for stable Li-S batteriescitations
- 2019Reduction kinetics for large spherical 2:1 iron–manganese oxide redox materials for thermochemical energy storagecitations
- 2019Metal-Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li-S Battery Electrodescitations
- 2018NiO–ZnO Nanoheterojunction Networks for Room-Temperature Volatile Organic Compounds Sensingcitations
- 2017Removal of lead from aqueous solution using superparamagnetic palygorskite nanocompositecitations
- 2013Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostabilitycitations
Places of action
Organizations | Location | People |
---|
article
NiO–ZnO Nanoheterojunction Networks for Room-Temperature Volatile Organic Compounds Sensing
Abstract
<p>Engineering of highly performing nanomaterials, capable of rapid detection of trace concentrations of gas molecules at room temperature, is key to the development of the next generation of miniaturized chemical sensors. Here, a highly performing nanoheterojunctions layout is presented for the rapid room-temperature chemical sensing of volatile organic compounds down to ten particles per billion concentrations. The layout consists of a 3D network of nickel oxide–zinc oxide (NiO–ZnO) p–n semiconductors with grain size of ≈20 nm nanometers and a porosity of ≈98%. Notably, it is observed that the formation of the p–n heterojunctions by decoration of a ZnO nanoparticle networks with NiO increases the sensor response by more than four times while improving the lower limit of detection. Under solar light irradiation, the optimal NiO–ZnO nanoheterojunction networks demonstrate a strong and selective room-temperature response to two important volatile organic compounds utilized for breath analysis, namely acetone and ethanol. Furthermore, these NiO–ZnO nanoheterojunctions show an inverse response to acetone from that observed for all others reducing gas molecules (i.e., ethanol, propane, and ethylbenzene). It is believed that these novel insights of the optoelectrochemical properties of ultraporous nanoheterojunction networks provide guidelines for the future design of low-power solid-state chemical sensors.</p>