People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ribierre, Jean Charles
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Artificial p–n‐like Junction Based on Pure 2D Organic–Inorganic Halide Perovskite Structure Having Naphthalene Diimide Acceptor Moietiescitations
- 2018Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilon‐Near‐Zero Organic Thin Filmscitations
- 2012Nanosecond two-photon absorption and lasing in fluorene-based organic semiconductors
- 2011Influence of gate dielectric on the ambipolar characteristics of solution-processed organic field-effect transistorscitations
- 2006Influence of the average molecular weight and the concentration of plasticizer on the orientational dynamics of chromophores in guest-host polymerscitations
Places of action
Organizations | Location | People |
---|
article
Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilon‐Near‐Zero Organic Thin Films
Abstract
<jats:title>Abstract</jats:title><jats:p>Enhanced Kerr nonlinearities are observed in metamaterials such as conducting oxides and doped inorganic semiconductor thin films showing epsilon‐near‐zero (ENZ) response in the infrared region. However, to achieve ENZ in the visible, artificial metamaterials with more complex nanostructures have to be specifically designed. Here, using sodium [5,6‐dichloro‐2‐[[5,6‐dichloro‐1‐ethyl‐3‐(4‐sulphobutyl)‐benzimidazol‐2‐ylidene]‐propenyl]‐1‐ethyl‐3‐(4‐sulphobutyl)‐benzimidazolium hydroxide] and [2,4‐bis[8‐hydroxy‐1,1,7,7‐tetramethyljulolidin‐9‐yl]squaraine] organic thin films, ENZ responses between 450 and 620 nm are demonstrated. Both nonlinear refractive index and nonlinear absorption coefficient are enhanced by more than two orders of magnitude in the ENZ spectral region. These optical effects in the visible spectral range come from the strongly dispersive permittivity of molecular aggregates resulting from the coupling of excitonic transition dipoles. These findings open the path toward a next generation of high‐performance solution‐processable organic nonlinear optical materials with ENZ properties that can be tuned by molecular engineering.</jats:p>