People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yetisen, Ali K.
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2018Highly Efficient Energy Transfer in Light Emissive Poly(9,9-dioctylfluorene) and Poly(p-phenylenevinylene) Blend Systemcitations
- 2018Functionalized flexible soft polymer optical fibers for laser photomedicinecitations
- 2018Flexible corner cube retroreflector array for temperature and strain sensingcitations
- 2018Energy Landscape of Vertically Anisotropic Polymer Blend Films toward Highly Efficient Polymer Light-Emitting Diodes (PLEDs)citations
- 2017Electrically Tunable Scattering from Devitrite-Liquid Crystal Hybrid Devicescitations
- 2017Phase-conjugated directional diffraction from a retroreflector array hologramcitations
- 2017Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug deliverycitations
- 2016Color-Selective 2.5D Holograms on Large-Area Flexible Substrates for Sensing and Multilevel Securitycitations
- 2016Nanotechnology in textilescitations
- 2014Enhanced reflection from inverse tapered nanocone arrayscitations
Places of action
Organizations | Location | People |
---|
article
Electrically Tunable Scattering from Devitrite-Liquid Crystal Hybrid Devices
Abstract
<p>Devitrite is normally an unwanted crystalline impurity in the soda-lime-silica glass making process. Thin needles formed by heterogeneous nucleation of devitrite on the glass surface provide unique birefringence properties for potential applications in tunable optical devices. Here, devitrite and a liquid crystal are combined to create an electrically variable optical diffuser. The magnitude and scattering angle of the transmitted light propagating through the diffuser are tuned by varying the voltage between the graphene and indium tin oxide electrodes on either side of the liquid crystal. The threshold voltage to switch the transmitted light from a predominantly horizontal diffusion to a random order is 3.5 V. Angle-resolved measurements show broad diffusion angles of transmitted light with a maximum deflection of ±60°. The dynamically tunable devitrite-liquid crystal hybrid devices may advance the development of currently less viable technologies including beam shaping and automatic light transmission control.</p>