People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmed, Rajib
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021Engineering Polysaccharide-Based Hydrogel Photonic Constructs: From Multiscale Detection to the Biofabrication of Living Optical Fiberscitations
- 2021Wearable Collector for Noninvasive Sampling of SARS-CoV-2 from Exhaled Breath for Rapid Detectioncitations
- 2021Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applicationscitations
- 2020Tunable Fano-Resonant Metasurfaces on a Disposable Plastic-Template for Multimodal and Multiplex Biosensing.citations
- 2018Functionalized flexible soft polymer optical fibers for laser photomedicinecitations
- 2018Flexible corner cube retroreflector array for temperature and strain sensingcitations
- 2017Phase-conjugated directional diffraction from a retroreflector array hologramcitations
- 2016Color-Selective 2.5D Holograms on Large-Area Flexible Substrates for Sensing and Multilevel Securitycitations
Places of action
Organizations | Location | People |
---|
article
Color-Selective 2.5D Holograms on Large-Area Flexible Substrates for Sensing and Multilevel Security
Abstract
<p>2.5D photonic nanostructures with narrow-band diffraction characteristics have a vast range of potential applications in information storage, tunable lasers, optical filters, and biosensors. However, fabrication of 2.5D photonic devices over large areas remains expertise-dependent, inaccurate, and high-cost, limiting their widespread use in practical applications and consumer products. Here, large area printing of quasi 2.5D holograms is demonstrated in the visible spectrum. These holographic surface-relief gratings are hexagonally packed lateral microscale honeycomb pyramids consisting of vertical nanoscale steps. The consecutive steps act as Bragg gratings producing constructive interference of selective visible wavelengths. The 2.5D nanostepped pyramids exhibit coloration due to the narrow-band Bragg diffraction that is tuned in the visible spectrum and a wide angular range. Roll-to-roll processing allows for rapid nanoimprinting the 2.5D nanostepped pyramid arrays over large areas of acrylate polymer film on poly(ethylene terephthalate) substrate. The utilities of the 2.5D holograms are demonstrated by creating colorimetric refractive index and relative humidity sensors, quick response codes, fingerprints, signatures, and encrypted labels. It is envisioned that 2.5D holograms can be integrated with desktop dot-matrix printers for application in sensing, data storage, and security.</p>