Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mikulchyk, Tatsiana

  • Google
  • 1
  • 8
  • 54

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Color-Selective 2.5D Holograms on Large-Area Flexible Substrates for Sensing and Multilevel Security54citations

Places of action

Chart of shared publication
Martin, Suzanne
1 / 5 shared
Jiang, Nan
1 / 4 shared
Naydenova, Izabela
1 / 7 shared
Humar, Matjaž
1 / 1 shared
Yetisen, Ali K.
1 / 10 shared
Yun, Seok Hyun
1 / 4 shared
Montelongo, Yunuen
1 / 3 shared
Ahmed, Rajib
1 / 8 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Martin, Suzanne
  • Jiang, Nan
  • Naydenova, Izabela
  • Humar, Matjaž
  • Yetisen, Ali K.
  • Yun, Seok Hyun
  • Montelongo, Yunuen
  • Ahmed, Rajib
OrganizationsLocationPeople

article

Color-Selective 2.5D Holograms on Large-Area Flexible Substrates for Sensing and Multilevel Security

  • Martin, Suzanne
  • Jiang, Nan
  • Naydenova, Izabela
  • Humar, Matjaž
  • Yetisen, Ali K.
  • Mikulchyk, Tatsiana
  • Yun, Seok Hyun
  • Montelongo, Yunuen
  • Ahmed, Rajib
Abstract

<p>2.5D photonic nanostructures with narrow-band diffraction characteristics have a vast range of potential applications in information storage, tunable lasers, optical filters, and biosensors. However, fabrication of 2.5D photonic devices over large areas remains expertise-dependent, inaccurate, and high-cost, limiting their widespread use in practical applications and consumer products. Here, large area printing of quasi 2.5D holograms is demonstrated in the visible spectrum. These holographic surface-relief gratings are hexagonally packed lateral microscale honeycomb pyramids consisting of vertical nanoscale steps. The consecutive steps act as Bragg gratings producing constructive interference of selective visible wavelengths. The 2.5D nanostepped pyramids exhibit coloration due to the narrow-band Bragg diffraction that is tuned in the visible spectrum and a wide angular range. Roll-to-roll processing allows for rapid nanoimprinting the 2.5D nanostepped pyramid arrays over large areas of acrylate polymer film on poly(ethylene terephthalate) substrate. The utilities of the 2.5D holograms are demonstrated by creating colorimetric refractive index and relative humidity sensors, quick response codes, fingerprints, signatures, and encrypted labels. It is envisioned that 2.5D holograms can be integrated with desktop dot-matrix printers for application in sensing, data storage, and security.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer