People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gholipour, Behrad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2018Optical bistability in shape-memory nanowire metamaterial arraycitations
- 2017Merging metamaterial and optical fiber technologies
- 2017Fibre-coupled photonic metadevices
- 2016Lithography assisted fiber-drawing nanomanufacturingcitations
- 2015Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computingcitations
- 2014Optical and electronic properties of bismuth-implanted glassescitations
- 2014n-type chalcogenides by ion implantationcitations
- 2014n-type chalcogenides by ion implantation.citations
- 2013On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses ; Analogie mezi fotoluminescencí a změnou typu vodivosti v Bi- a Pb-dotovaných sklechcitations
- 2013On the analogy between photoluminescence and carrier-type reversal in Bi-and Pb-doped glassescitations
- 2010Metamaterial electro-optic switch of nanoscale thicknesscitations
Places of action
Organizations | Location | People |
---|
article
Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing
Abstract
The human brain, with all its complexity, relies on an interconnected network of organic biological microfibers, known as neurons, which facilitate the propagation of information across the body. Through the use of electrical action potentials, these signals are processed using different spatio-temporal principles that rely on the biochemical nature of axons (used for information propagation) and synapses (highly variable junctions), which make up the mammalian neurobiological system. This manifests itself in the adaptable nature of the human cognition that makes us capable of learning through experiences.