Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ilse, Sven Erik

  • Google
  • 1
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Fabrication and Characterization of a Magnetic 3D‐printed Microactuator8citations

Places of action

Chart of shared publication
Merle, Benoit
1 / 87 shared
Rothermel, Florian
1 / 1 shared
Giessen, Harald
1 / 5 shared
Krapf, Anna
1 / 8 shared
Jung, Chris
1 / 1 shared
Herkommer, Alois M.
1 / 1 shared
Thiele, Simon
1 / 18 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Merle, Benoit
  • Rothermel, Florian
  • Giessen, Harald
  • Krapf, Anna
  • Jung, Chris
  • Herkommer, Alois M.
  • Thiele, Simon
OrganizationsLocationPeople

article

Fabrication and Characterization of a Magnetic 3D‐printed Microactuator

  • Merle, Benoit
  • Rothermel, Florian
  • Giessen, Harald
  • Ilse, Sven Erik
  • Krapf, Anna
  • Jung, Chris
  • Herkommer, Alois M.
  • Thiele, Simon
Abstract

<jats:title>Abstract</jats:title><jats:p>Conventional MEMS microactuators have, in recent years, been complemented by 3D‐printed actuatable microstructures fabricated via two‐Photon‐Polymerization (2PP). Herein, a novel compact 3D‐printed magnetically actuatable microactuator with a diameter of 500µm is demonstrated, originally designed for micro‐optical systems. It is fabricated by incorporating a composite of NdFeB microparticles and epoxy resin into a designated reservoir of the printed mechanical structure within a simple post‐processing step. The microactuator structure features mechanical springs, allowing for continuous positioning with large displacement. Mechanical studies by nanoindentation of IP‐S bulk structures reveal a viscoelastic material behavior, described by a two‐element General Kelvin‐Voigt viscoelasticity model. The obtained material parameters are then used to simulate and characterize the spring behavior of the microactuator. Actuation experiments are conducted using an external microcoil. The actuator displacement is measured for triangular current pulses with a peak current of 106 mA and durations of 1 to 100 s, resulting in displacements of 69.1 to 88.9 µm. Hysteretic behavior of the actuator is observed, attributable to viscoelasticity and magnetic properties of the core material. Numerical simulations of the experiment demonstrate this behavior as well. On‐the‐fly demagnetization and the implementation of closed‐loop control allow for both high repeatability and precise positioning.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • experiment
  • simulation
  • composite
  • nanoindentation
  • viscoelasticity
  • resin