Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wohlrab, Steve

  • Google
  • 1
  • 12
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024SnS2 Thin Film with In Situ and Controllable Sb Doping via Atomic Layer Deposition for Optoelectronic Applications3citations

Places of action

Chart of shared publication
Krahl, Fabian
1 / 3 shared
Shin, Dongho
1 / 1 shared
Mukherjee, Samik
1 / 2 shared
Pang, Chi
1 / 1 shared
Wrzesińskalashkova, Angelika
1 / 1 shared
Bahrami, Amin
1 / 10 shared
Vaynzof, Yana
1 / 31 shared
Nielsch, Kornelius
1 / 56 shared
Nasiri, Noushin
1 / 2 shared
Yang, Jun
1 / 5 shared
Lehmann, Sebastian
1 / 28 shared
Popov, Alexey
1 / 13 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Krahl, Fabian
  • Shin, Dongho
  • Mukherjee, Samik
  • Pang, Chi
  • Wrzesińskalashkova, Angelika
  • Bahrami, Amin
  • Vaynzof, Yana
  • Nielsch, Kornelius
  • Nasiri, Noushin
  • Yang, Jun
  • Lehmann, Sebastian
  • Popov, Alexey
OrganizationsLocationPeople

article

SnS2 Thin Film with In Situ and Controllable Sb Doping via Atomic Layer Deposition for Optoelectronic Applications

  • Krahl, Fabian
  • Shin, Dongho
  • Mukherjee, Samik
  • Pang, Chi
  • Wrzesińskalashkova, Angelika
  • Wohlrab, Steve
  • Bahrami, Amin
  • Vaynzof, Yana
  • Nielsch, Kornelius
  • Nasiri, Noushin
  • Yang, Jun
  • Lehmann, Sebastian
  • Popov, Alexey
Abstract

<jats:title>Abstract</jats:title><jats:p>SnS<jats:sub>2</jats:sub> stands out as a highly promising 2D material with significant potential for applications in the field of electronics and photovoltaic technologies. Numerous attempts have been undertaken to modulate the physical properties of SnS<jats:sub>2</jats:sub> by doping with various metal ions. Here, a series of Sb‐doped SnS<jats:sub>2</jats:sub> is deposited via atomic layer deposition (ALD) super‐cycle process and compared its crystallinity, composition, and optical properties to those of pristine SnS<jats:sub>2</jats:sub>. It is found that the increase in the concentration of Sb is accompanied by a gradual reduction in the Sn and S binding energies. The work function is increased upon Sb doping from 4.32 eV (SnS<jats:sub>2</jats:sub>) to 4.75 eV (Sb‐doped SnS<jats:sub>2</jats:sub> with 9:1 ratio). When integrated into photodetectors, the Sb‐doped SnS<jats:sub>2</jats:sub> showed improved performance, demonstrating increased peak photoresponsivity values from 19.5 to 27.8 A W<jats:sup>−1</jats:sup> at 405 nm, accompanied by an improvement in response speed. These results offer valuable insights into next‐generation optoelectronic applications based on SnS<jats:sub>2</jats:sub>.</jats:p>

Topics
  • impedance spectroscopy
  • thin film
  • crystallinity
  • atomic layer deposition