Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Haldar, Krishna Kanta

  • Google
  • 2
  • 8
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024WS2/Mesoporous Carbon Nanostructures as a Bifunctional Electrode for All Quasi‐Solid‐State Supercapacitor and Oxygen Evolution Reaction15citations
  • 2024Biogenic Bovine Serum Albumin/Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/Cr<sub>2</sub>O<sub>3</sub> hybrid electrocatalyst for improved oxygen evolution reaction9citations

Places of action

Chart of shared publication
Iqbal, Muzahir
1 / 1 shared
Saykar, Nilesh G.
1 / 2 shared
Ahmed, Imtiaz
1 / 3 shared
Singh, Abhijeet
1 / 1 shared
Arya, Anil
1 / 2 shared
Ahmed, Dr. Imtiaz
1 / 1 shared
Raj, Ritu
1 / 2 shared
Kumar, Vikash
1 / 5 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Iqbal, Muzahir
  • Saykar, Nilesh G.
  • Ahmed, Imtiaz
  • Singh, Abhijeet
  • Arya, Anil
  • Ahmed, Dr. Imtiaz
  • Raj, Ritu
  • Kumar, Vikash
OrganizationsLocationPeople

article

WS2/Mesoporous Carbon Nanostructures as a Bifunctional Electrode for All Quasi‐Solid‐State Supercapacitor and Oxygen Evolution Reaction

  • Iqbal, Muzahir
  • Saykar, Nilesh G.
  • Ahmed, Imtiaz
  • Singh, Abhijeet
  • Arya, Anil
  • Haldar, Krishna Kanta
Abstract

<jats:title>Abstract</jats:title><jats:p>2D transition‐metal sulfides have developed as favorable electroactive materials for electrochemical energy storage and conversion applications. In this work, WS<jats:sub>2</jats:sub>/mesoporous carbon (MC) is developed by a one‐step hydrothermal technique for supercapacitor and oxygen evaluation reaction (OER) application. However, the metal sulfides have poor rate and cyclic performance due to the aggregations between two layers of structures restricting their performance. The interaction between WS<jats:sub>2</jats:sub> nanosheets and MC produces a synergistic effect, resulting in a decent electrochemical energy storage and conversion application. The synthesized materials used to prepare quasi‐solid‐state symmetric (QSSS) and asymmetric (QSSA) supercapacitor configuration enable the highest specific capacitance (<jats:italic>C</jats:italic><jats:sub>SP</jats:sub>) of 305.45 F g<jats:sup>−1</jats:sup> and 204.21 F g<jats:sup>−1</jats:sup>@ 10 mV s<jats:sup>−1</jats:sup>, respectively. Moreover, the specific energy and power density of QSSS and QSSA devices are 31.1 Wh kg<jats:sup>−1</jats:sup> @824.95 W kg<jats:sup>−1</jats:sup> and 24.74 Wh kg<jats:sup>−1</jats:sup> @549.84 W kg<jats:sup>−1</jats:sup>, respectively. Additionally, the multifunctionality of the synthesized binary nanocomposite is also tested for OER. The composite shows a desirable over potential of 307 mV in 6 <jats:sc>m</jats:sc> KOH electrolyte, with a 69 mV dec<jats:sup>−1</jats:sup> Tafel slope. The dual role of WS<jats:sub>2</jats:sub>/MC for energy storage and oxygen evaluation reaction conversion reveals the potential of metal sulfides.</jats:p>

Topics
  • nanocomposite
  • density
  • impedance spectroscopy
  • Carbon
  • Oxygen