Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shek, Chanhung

  • Google
  • 2
  • 8
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 20242D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recovery5citations
  • 20233D Architectural MXene‐based Composite Films for Stealth Terahertz Electromagnetic Interference Shielding Performance10citations

Places of action

Chart of shared publication
Karthikeyan, Vaithinathan
2 / 17 shared
Kannan, Venkatramanan
1 / 2 shared
Assi, Dani S.
2 / 11 shared
Vellaisamy, Arul Lenus Roy
2 / 18 shared
Huang, Hongli
2 / 5 shared
Chen, Yue
1 / 3 shared
Alsulami, Raghad Saud
1 / 2 shared
Chen, Bao-Jie
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Karthikeyan, Vaithinathan
  • Kannan, Venkatramanan
  • Assi, Dani S.
  • Vellaisamy, Arul Lenus Roy
  • Huang, Hongli
  • Chen, Yue
  • Alsulami, Raghad Saud
  • Chen, Bao-Jie
OrganizationsLocationPeople

article

2D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recovery

  • Karthikeyan, Vaithinathan
  • Kannan, Venkatramanan
  • Assi, Dani S.
  • Vellaisamy, Arul Lenus Roy
  • Huang, Hongli
  • Shek, Chanhung
  • Chen, Yue
Abstract

<jats:title>Abstract</jats:title><jats:p>Graphene analog MXenes are the best options for interface engineering traditional thermoelectric materials. For the first time, a composite‐engineered TEG device composed of heavily doped bismuth and antimony telluride with incorporated Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub> (MXene) nanoflakes is developed. Incorporated MXenes improved the electrical conductivity by carrier injection and reduces thermal conductivity by interfacial phonon scattering in both composites. The fabricated composite TEG device resulted in a maximum power of 1.14 mW and a power density of 6.1 mWcm<jats:sup>−2</jats:sup>. The fabricated composite TEG also demonstrates strong power generation stability and durability. Added MXenes improve the mechanical stability by employing a dispersion‐strengthening mechanism. Conclusively, the developed composite‐engineered TEG device is a facile and efficiency‐improving option for next‐generation bismuth telluride‐based commercial TEG devices.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • composite
  • durability
  • interfacial
  • thermal conductivity
  • electrical conductivity
  • Bismuth
  • Antimony