Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nikitin, Timur

  • Google
  • 5
  • 31
  • 98

University of Coimbra

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Graphene‐Assisted Chemical Stabilization of Liquid Metal Nano Droplets for Liquid Metal Based Energy Storage2citations
  • 2014Continuous-Wave Laser Annealing of a Si/SiO2 Superlattice4citations
  • 2010Analysis of the size distribution of single-walled carbon nanotubes using optical absorption spectroscopy66citations
  • 2010Continuous-wave laser annealing of Si-rich oxide: A microscopic picture of macroscopic Si-SiO2 phase separation16citations
  • 2008Ion irradiation of carbon nanotubes encapsulating cobalt crystals10citations

Places of action

Chart of shared publication
Sanati, Afsaneh L.
1 / 1 shared
Costa, Guilherme
1 / 2 shared
Majidi, Carmel
1 / 4 shared
Fausto, Rui
1 / 2 shared
Rasanen, Markku
2 / 2 shared
Kemell, Marianna Leena
1 / 47 shared
Novikov, Sergei
2 / 5 shared
Ritala, Mikko
1 / 194 shared
Khryashchev, Leonid
2 / 9 shared
Puukilainen, Esa
1 / 12 shared
Khriachtchev, Leonid
2 / 7 shared
Kauppinen, Esko I.
1 / 57 shared
Brown, David P.
1 / 3 shared
Pfaler, Jan V.
1 / 1 shared
Jiang, Hua
1 / 45 shared
Nasibulin, Albert G.
1 / 32 shared
Aitchison, Brad
1 / 1 shared
Zhu, Zhen
1 / 7 shared
Tian, Ying
1 / 4 shared
Iacona, Fabio
1 / 1 shared
Juhanoja, Jyrki
1 / 2 shared
Domanskaya, Alexandra
1 / 1 shared
Boninelli, Simona
1 / 4 shared
Engdahl, Anders
1 / 6 shared
Sun, L.
1 / 16 shared
Terrones, M.
1 / 11 shared
Rodriguez-Manzo, J. A.
1 / 1 shared
Keinonen, Juhani
1 / 6 shared
Krasheninnikov, Arkady
1 / 10 shared
Lehtinen, Ossi
1 / 2 shared
Banhart, F.
1 / 6 shared
Chart of publication period
2024
2014
2010
2008

Co-Authors (by relevance)

  • Sanati, Afsaneh L.
  • Costa, Guilherme
  • Majidi, Carmel
  • Fausto, Rui
  • Rasanen, Markku
  • Kemell, Marianna Leena
  • Novikov, Sergei
  • Ritala, Mikko
  • Khryashchev, Leonid
  • Puukilainen, Esa
  • Khriachtchev, Leonid
  • Kauppinen, Esko I.
  • Brown, David P.
  • Pfaler, Jan V.
  • Jiang, Hua
  • Nasibulin, Albert G.
  • Aitchison, Brad
  • Zhu, Zhen
  • Tian, Ying
  • Iacona, Fabio
  • Juhanoja, Jyrki
  • Domanskaya, Alexandra
  • Boninelli, Simona
  • Engdahl, Anders
  • Sun, L.
  • Terrones, M.
  • Rodriguez-Manzo, J. A.
  • Keinonen, Juhani
  • Krasheninnikov, Arkady
  • Lehtinen, Ossi
  • Banhart, F.
OrganizationsLocationPeople

article

Graphene‐Assisted Chemical Stabilization of Liquid Metal Nano Droplets for Liquid Metal Based Energy Storage

  • Sanati, Afsaneh L.
  • Costa, Guilherme
  • Nikitin, Timur
  • Majidi, Carmel
  • Fausto, Rui
Abstract

<jats:title>Abstract</jats:title><jats:p>Energy storage devices with liquid‐metal electrodes have attracted interest in recent years due to their potential for mechanical resilience, self‐healing, dendrite‐free operation, and fast reaction kinetics. Gallium alloys like Eutectic Gallium Indium (EGaIn) are appealing due to their low melting point and high theoretical specific capacity. However, EGaIn electrodes are unstable in highly alkaline electrolytes due to Gallium oxide dissolution. In this letter, this bottleneck is addressed by introducing chemically stable films in which nanoscale droplets of EGaIn are coated with trace amounts of graphene oxide (GO). It is demonstrated that a GO to EGaIn weight ratio as low as 0.01 provides enough protection for a thin film formed by GO@EGaIn nanocomposite against significantly acidic or alkaline environments (pH 1‐14). It is shown that GO coating significantly enhances the surface stability in such environments, thus improving the energy storage capacity by over 10x. Microstructural analysis confirms GO@EGaIn composite stability and enhanced electrochemical performance. Utilizing this, a thin‐film supercapacitor is fabricated. Results indicate that when coating the EGaIn with GO to EGaIn ratio of 0.001, the areal capacitance improves by 10 times, reaching 20.02 mF cm<jats:sup>−2</jats:sup>. This breakthrough paves the way for advanced liquid metal‐based thin‐film electrodes, promising significant improvements in energy storage applications.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • thin film
  • Gallium
  • Indium