Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gupta, Varun

  • Google
  • 2
  • 6
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Long term retention in <scp>δ‐PVDF</scp> thin film prepared by rapid ice quenching technique3citations
  • 2023All‐Electrospun, Water‐Resistant, Breathable, Wearable, and Stable Metal Halide Perovskite Engineered Electroactive Polymer Textiles for Flexible Piezoelectric Nanogenerator13citations

Places of action

Chart of shared publication
Malik, Pinki
1 / 1 shared
Mishra, Hari Krishna
1 / 1 shared
Kundu, Tarun Kumar
1 / 1 shared
Sarkar, Ranjini
1 / 1 shared
Saini, Dalip
1 / 1 shared
Mondal, Bidya
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Malik, Pinki
  • Mishra, Hari Krishna
  • Kundu, Tarun Kumar
  • Sarkar, Ranjini
  • Saini, Dalip
  • Mondal, Bidya
OrganizationsLocationPeople

article

All‐Electrospun, Water‐Resistant, Breathable, Wearable, and Stable Metal Halide Perovskite Engineered Electroactive Polymer Textiles for Flexible Piezoelectric Nanogenerator

  • Kundu, Tarun Kumar
  • Sarkar, Ranjini
  • Saini, Dalip
  • Mondal, Bidya
  • Gupta, Varun
Abstract

<jats:title>Abstract</jats:title><jats:p>Halide perovskite materials have recently received a lot of attention in the field of optoelectronic and energy harvesting applications regardless of their environmental instabilities. Herein, a three‐layer assembled wearable piezoelectric nanogenerator (PENG) is fabricated by continuous electrospinning process, where the middle layer is an active component, made of Cs<jats:sub>3</jats:sub>Bi<jats:sub>2</jats:sub>I<jats:sub>9</jats:sub>‐PVDF (PVDF‐CBI) nanofiber and outer layers are conducting (<jats:italic>σ</jats:italic> ≈ 2.2 S m<jats:sup>−1</jats:sup>) electrodes of PEDOT‐coated PVDF (PVDF‐PEDOT) nanofiber mats. The incorporation of perovskite Cs<jats:sub>3</jats:sub>Bi<jats:sub>2</jats:sub>I<jats:sub>9</jats:sub> fillers fully induces <jats:italic>β</jats:italic>‐phase (i.e., 100% of yield) in the PVDF matrix. Furthermore, the mechanism of electroactive <jats:italic>β</jats:italic>‐phase formation is analyzed by DFT studies. The PENG is able to generate superior open circuit voltage of ≈12 V, short circuit current of ≈7 µA, and power density of 3 µW cm<jats:sup>−2</jats:sup>. In addition, it demonstrates remarkable breathability (b ≈1.13 kg m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>), flexibility, water‐resistive properties (water contact angle ≈138<jats:sup>◦</jats:sup>), and mechanoacoustic sensitivity (S<jats:sub>m</jats:sub> ≈5 V Pa<jats:sup>−1</jats:sup>), enabling the development of robust wearable devices that are efficient enough to monitor human physiological motions and simultaneously harvest the biomechanical energy. These findings ingeniously promote the acceptability of lead‐free metal halide perovskite and conducting polymer in wearable energy harvesting, self‐powered robotics, and health‐care devices applications.</jats:p>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • polymer
  • phase
  • density functional theory
  • electrospinning