People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dahl, Anders Bjorholm
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Elucidating the Bulk Morphology of Cellulose-Based Conducting Aerogels with X-Ray Microtomography
- 2023Elucidating the Bulk Morphology of Cellulose-Based Conducting Aerogels with X-Ray Microtomography
- 2022SparseMeshCNN with Self-Attention for Segmentation of Large Meshescitations
- 2021Quantifying effects of manufacturing methods on fiber orientation in unidirectional composites using structure tensor analysiscitations
- 2020Characterization of the fiber orientations in non-crimp glass fiber reinforced composites using structure tensorcitations
- 2019Process characterization for molding of paper bottles using computed tomography and structure tensor analysis
- 2017Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materialscitations
- 2017Graphite nodules in fatigue-tested cast iron characterized in 2D and 3Dcitations
- 2015Dictionary Based Segmentation in Volumescitations
- 2015Characterization of boundary roughness of two cube grains in partly recrystallized coppercitations
- 2015Boundary Fractal Analysis of Two Cube-oriented Grains in Partly Recrystallized Coppercitations
- 2014Surface Detection using Round Cutcitations
- 2014Pattern recognition approach to quantify the atomic structure of graphenecitations
- 2014Structure Identification in High-Resolution Transmission Electron Microscopic Imagescitations
- 2014Characterization of graphite nodules in thick-walled ductile cast iron
- 2014Quantification Tools for Analyzing Tomograms of Energy Materials
- 2013Automated Structure Detection in HRTEM Images: An Example with Graphene
- 2012Large scale tracking of stem cells using sparse coding and coupled graphs
Places of action
Organizations | Location | People |
---|
article
Elucidating the Bulk Morphology of Cellulose-Based Conducting Aerogels with X-Ray Microtomography
Abstract
Conducting cellulose composites are promising sustainable functional materials that have found application in energy devices, sensing and water purification. Herein, conducting aerogels are fabricated based on nanofibrillated cellulose and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, using the ice templating technique, and their bulk morphology is characterized with X-ray microtomography. The freezing method (−20 °C in a freezer vs liquid nitrogen) does not impact the mean porosity of the aerogels but the liquid-N<sub>2</sub> aerogels have smaller pores. The integration of carbon fibers as addressing electrodes prior to freezing results in increased mean porosity and pore size in the liquid-N<sub>2</sub> aerogels signifying that the carbon fibers alter the morphology of the aerogels when the freezing is fast. Spatially resolved porosity and pore size distributions also reveal that the liquid-N2 aerogels are more inhomogeneous. Independent of the freezing method, the aerogels have similar electrochemical properties. For aerogels without carbon fibers, freezer-aerogels have higher compression modulus and are less stable under cycling compression fatigue test. This can be explained by higher porosity with larger pores in the center of liquid-N<sub>2</sub> aerogels and thinner pore walls. This work demonstrates that micro-CT is a powerful tool for characterizing the morphology of aerogels in a non-destructive and spatially resolved manner.