People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nicosia, Angelo
University of Catania
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Abatement of volatile organic compounds employing a thermoplastic nano‐photocatalyst layered on a glass reactorcitations
- 2023Photocatalytic Activity of TiO<sub>2</sub>‐Containing Nanocomposites versus the Chemical Nature of the Polymeric Matrices: A Comparisoncitations
- 2020Polymer-Based Graphene Derivatives and Microwave-Assisted Silver Nanoparticles Decoration as a Potential Antibacterial Agentcitations
- 2018Novel Luminescent Ionic Adducts Based on Pyrene-1-sulfonatecitations
Places of action
Organizations | Location | People |
---|
article
Photocatalytic Activity of TiO<sub>2</sub>‐Containing Nanocomposites versus the Chemical Nature of the Polymeric Matrices: A Comparison
Abstract
<jats:title>Abstract</jats:title><jats:p>Environmental remediation of xenobiotic pollutants is an important issue in industrialized society. Catalyst‐mediated pollutant photodegradation using solar light shows promising results. Titanium dioxide nanoparticles (TiO<jats:sub>2</jats:sub>NPs) are a well‐known standard for mineralizing organic water pollutants. Its use as a sludge pointed out the need to support this photocatalyst to ease both its use and recovery. Polymers represent a viable solution because of their versatility, stability, and cheapness. The in situ radical bulk polymerization approach to the development of TiO<jats:sub>2</jats:sub>‐based thermoplastic nanocomposites for xenobiotic photodegradation enhances the photocatalytic performance of the semiconductor nanoparticles. The versatility and efficiency of these systems pave the way for their industrial applications as photocatalytic coatings for large‐scale surfaces. To shed light on the influences of the chemical nature of the polymer matrix on the photocatalytic efficiency of the nanosystems, polyvinyl acetate, polymethyl methacrylate, and polystyrene are investigated as supports for TiO<jats:sub>2</jats:sub>NPs. The obtained TiO<jats:sub>2</jats:sub>‐containing nanocomposites are characterized by thermal analyses, UV‐vis, Raman, and X‐ray photoelectron spectroscopies, dynamic light scattering, and contact angle measurements. The photocatalytic activity of the nanosystems in the form of thin films is investigated against pollutants in water solutions, and shows clear differences in the photodegradation efficiency among the nanocomposites having different chemical natures of polymers.</jats:p>