People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kymissis, Ioannis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Ultra‐Thin Ceramic Substrates for Improved Heat sinking for MicroLEDs
Abstract
<jats:title>Abstract</jats:title><jats:p>Micro light emitting diodes (MicroLEDs) provide unrivaled luminance and operating lifetime, which has led to significant activity using devices for display and non‐display applications. The small size and high power density of microLEDs, however, causes increased adverse heating effects that can limit performance. A new generation of electrically insulating high thermal conductivity materials, such as alumina, is proposed to mitigate these thermal effects when used as a substrate as an alternative to glass. This strategy can then be used as a method of passive heat sinking to improve the overall performance of the microLED. In this work, a newly available material, an 80 micron thick alumina ceramic substrate, is shown to yield a 30 % improvement on average in the maximum current drive over a glass substrate.</jats:p>