Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kymissis, Ioannis

  • Google
  • 2
  • 9
  • 113

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Ultra‐Thin Ceramic Substrates for Improved Heat sinking for MicroLEDs1citations
  • 2015Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures112citations

Places of action

Chart of shared publication
Mcginn, Christine
1 / 1 shared
Noga, Megan
1 / 1 shared
Kim, Chang-Hyun
1 / 1 shared
Petrone, Nicholas
1 / 3 shared
Carta, Fabio
1 / 1 shared
Hlaing, Htay
1 / 1 shared
Hone, James
1 / 10 shared
Barton, Rob, A.
1 / 1 shared
Nam, Chang-Yong
1 / 1 shared
Chart of publication period
2023
2015

Co-Authors (by relevance)

  • Mcginn, Christine
  • Noga, Megan
  • Kim, Chang-Hyun
  • Petrone, Nicholas
  • Carta, Fabio
  • Hlaing, Htay
  • Hone, James
  • Barton, Rob, A.
  • Nam, Chang-Yong
OrganizationsLocationPeople

article

Ultra‐Thin Ceramic Substrates for Improved Heat sinking for MicroLEDs

  • Kymissis, Ioannis
  • Mcginn, Christine
  • Noga, Megan
Abstract

<jats:title>Abstract</jats:title><jats:p>Micro light emitting diodes (MicroLEDs) provide unrivaled luminance and operating lifetime, which has led to significant activity using devices for display and non‐display applications. The small size and high power density of microLEDs, however, causes increased adverse heating effects that can limit performance. A new generation of electrically insulating high thermal conductivity materials, such as alumina, is proposed to mitigate these thermal effects when used as a substrate as an alternative to glass. This strategy can then be used as a method of passive heat sinking to improve the overall performance of the microLED. In this work, a newly available material, an 80 micron thick alumina ceramic substrate, is shown to yield a 30 % improvement on average in the maximum current drive over a glass substrate.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • glass
  • glass
  • ceramic
  • thermal conductivity