People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Han, Jialuo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Soft Liquid Metal Infused Conductive Spongescitations
- 2022Induction heating for the removal of liquid metal-based implant mimics: a proof-of-conceptcitations
- 2020Pulsing liquid alloys for nanomaterials synthesiscitations
- 2020Pulsing liquid alloys for nanomaterials synthesiscitations
- 2020Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticlescitations
- 2020Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticlescitations
- 2019Liquid metals for tuning gas sensitive layerscitations
Places of action
Organizations | Location | People |
---|
article
Soft Liquid Metal Infused Conductive Sponges
Abstract
<jats:title>Abstract</jats:title><jats:p>Liquid metal droplets of gallium (Ga) and Ga‐based alloys are traditionally incorporated as deformable additives into soft elastomers to make them conductive. However, such a strategy has not been implemented to develop conductive sponges with real sponge‐like characteristics. Herein, polyurethane‐based sponges with Ga microdroplets embedded inside the polyurethane walls are developed. The liquid phase (at 45 °C) and solid phase (at room temperature) transition of the Ga fillers shows the temperature‐dependent functional variations in the mechanical, thermal, and electrical properties on the prepared composite sponges, which are investigated in detail. Unlike elastomers, the sponge possesses excellent elastic recovery, at ≈90%, and conductivity durability without sacrificing structural integrity. The reversible change of resistivity range is remarkable. When the Ga fillers account for 18% of the total sponge volume, the electrical resistivity varies from infinite values (insulator) under no applied pressure to 39.0 Ω m for the solid phase and 3.8 Ω m for the liquid phase under 386.8 kPa. New opportunities in developing flexible electrically conductive composite sponges with tunable mechanical and electrical properties that can be implemented for a variety of future applications are proposed.</jats:p>