Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Belmonte, Manuel

  • Google
  • 11
  • 32
  • 183

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023CVD nanocrystalline multilayer graphene coated 3D-printed alumina lattices14citations
  • 2022CVD nanocrystalline multilayer graphene coated 3D-printed alumina lattices14citations
  • 2022Enhanced Thermal and Mechanical Properties of 3D Printed Highly Porous Structures Based on γ‐Al<sub>2</sub>O<sub>3</sub> by Adding Graphene Nanoplatelets15citations
  • 2021Thermal transport and thermoelectric effect in composites of alumina and graphene-augmented alumina nanofibers10citations
  • 2020In Situ Graded Ceramic/Reduced Graphene Oxide Composites Manufactured by Spark Plasma Sintering2citations
  • 2019Improved crack resistance and thermal conductivity of cubic zirconia containing graphene nanoplatelets23citations
  • 2016Prominent local transport in silicon carbide composites containingin-situ synthesized three-dimensional graphene networks10citations
  • 2014Process for production of graphene7silicon carbide ceramic compositescitations
  • 2011Carbon nanofillers for machining insulating ceramics65citations
  • 2010Spark Plasma Sintering Mechanisms in Si3N4 Based Materials2citations
  • 2009Wear of aligned silicon nitride under dry sliding conditions28citations

Places of action

Chart of shared publication
Ramírez, Cristina
6 / 6 shared
Osendi, María Isabel
8 / 11 shared
Hussainova, Irina
3 / 16 shared
Karppinen, Maarit
3 / 60 shared
Miranzo, Pilar
4 / 5 shared
Saffar Shamshirgar, Ali
2 / 3 shared
Tewari, Girish C.
3 / 12 shared
Pérez-Coll, Domingo
2 / 8 shared
Shamshirgar, Ali Saffar
1 / 4 shared
Miranzo López, Pilar
6 / 11 shared
Morenosanabria, Luis
1 / 1 shared
Rojas Hernandez, Rocio Estefania
1 / 1 shared
Seitsonen, Jani
1 / 7 shared
Ivanov, Roman
1 / 6 shared
Osendi, Maria Isabel
1 / 1 shared
Moreno, Pablo
1 / 6 shared
García, Ana
1 / 5 shared
Chevalier, Jérôme
1 / 19 shared
Reveron, Helen
1 / 20 shared
Llorente, Javier
1 / 2 shared
Gómez-Gómez, Alberto
1 / 1 shared
Ocal, Carmen
2 / 16 shared
Román-Manso, Benito
2 / 2 shared
López Mir, Laura
1 / 8 shared
Terrones, Mauricio
1 / 6 shared
Gonzalez-Julian, Jesus
1 / 9 shared
Lauwers, Bert
1 / 36 shared
Malek, Olivier
1 / 9 shared
Vanderauwera, Wouter
1 / 1 shared
Vleugels, Jef
1 / 171 shared
González Julián, Jesús
1 / 2 shared
Gomes, J. R.
1 / 39 shared
Chart of publication period
2023
2022
2021
2020
2019
2016
2014
2011
2010
2009

Co-Authors (by relevance)

  • Ramírez, Cristina
  • Osendi, María Isabel
  • Hussainova, Irina
  • Karppinen, Maarit
  • Miranzo, Pilar
  • Saffar Shamshirgar, Ali
  • Tewari, Girish C.
  • Pérez-Coll, Domingo
  • Shamshirgar, Ali Saffar
  • Miranzo López, Pilar
  • Morenosanabria, Luis
  • Rojas Hernandez, Rocio Estefania
  • Seitsonen, Jani
  • Ivanov, Roman
  • Osendi, Maria Isabel
  • Moreno, Pablo
  • García, Ana
  • Chevalier, Jérôme
  • Reveron, Helen
  • Llorente, Javier
  • Gómez-Gómez, Alberto
  • Ocal, Carmen
  • Román-Manso, Benito
  • López Mir, Laura
  • Terrones, Mauricio
  • Gonzalez-Julian, Jesus
  • Lauwers, Bert
  • Malek, Olivier
  • Vanderauwera, Wouter
  • Vleugels, Jef
  • González Julián, Jesús
  • Gomes, J. R.
OrganizationsLocationPeople

article

Enhanced Thermal and Mechanical Properties of 3D Printed Highly Porous Structures Based on γ‐Al<sub>2</sub>O<sub>3</sub> by Adding Graphene Nanoplatelets

  • Ramírez, Cristina
  • Morenosanabria, Luis
  • Osendi, María Isabel
  • Belmonte, Manuel
  • Miranzo, Pilar
Abstract

<jats:title>Abstract</jats:title><jats:p>One of the main challenges to widen the potential applications of 3D printed highly porous ceramic structures in catalysis, energy storage or thermal management resides in the improvement of both their mechanical resistance and thermal conductivity. To achieve these goals, highly hierarchical γ‐alumina (γ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) scaffolds containing up to 18 vol% of graphene nanoplatelets (GNP), including channels of controlled size and shape in the millimeter scale and meso‐porosity within the rods, are developed by robocasting from boehmite‐based aqueous inks without other printing additives. These 3D structures exhibit high porosity (85%) and specific surface area of 100 m<jats:sup>2</jats:sup> g<jats:sup>−1</jats:sup>. The incorporation of 12 vol% GNP leads to an enhanced mechanical response of the scaffolds, increasing the compressive strength and the elastic modulus up to ≈80% as compared with data for plain γ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> scaffolds. The thermal conductivity is measured by the transient plane source method using specifically designed 3D structures with external sidewalls and additional top/bottom covers to assure a good contact at the outer surfaces. The thermal conductivity of 3D porous structures augments with the GNP content, reaching a maximum value four times higher for the scaffolds containing 18 vol% GNP than that attained for the 3D monolithic γ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • surface
  • strength
  • porosity
  • ceramic
  • thermal conductivity