Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gupta, Manoj Kumar

  • Google
  • 9
  • 28
  • 164

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Production of Natural Straw-Derived Sustainable Polymer Composites for a Circular Agro-Economy2citations
  • 2023Sustainable robust waste-recycled ocean water-resistant fly ash-carbon nanotube nanocomposite-based triboelectric nanogenerator10citations
  • 2023Blue light emitting piezoelectric few-layered borophene nanosheets for flexible nanogenerators20citations
  • 2022Adhesive assisted TiB2 coating effects on friction stir welded joints3citations
  • 2022Flexible Interconnected Cu‐Ni Nanoalloys Decorated Carbon Nanotube‐Poly(vinylidene fluoride) Piezoelectric Nanogenerator12citations
  • 2020Transforming marble waste into high-performance, water-resistant, and thermally insulative hybrid polymer composites for environmental sustainability39citations
  • 2017Highly efficient flexible piezoelectric nanogenerator and femtosecond two-photon absorption properties of nonlinear lithium niobate nanowires15citations
  • 2012Dielectric studies and band gap tuning of ferroelectric Cr-doped ZnO nanorods51citations
  • 2004Encapsulation of air‐filled poly(dimethylsiloxane) microballoons in polyimide as a polymeric low ε dielectric12citations

Places of action

Chart of shared publication
Mallick, Tamali
1 / 1 shared
Patidar, Ravi
2 / 3 shared
Thakur, Vijay Kumar
2 / 125 shared
Pappu, Asokan
3 / 7 shared
Chaturvedi, Ranjan
1 / 1 shared
Khan, Anam
1 / 2 shared
Chaturvedi, Ashish Kumar
1 / 1 shared
Badatya, Simadri
3 / 3 shared
Srivastava, Avanish Kumar
2 / 3 shared
Sharma, Charu
1 / 1 shared
Sathish, N.
1 / 1 shared
Rajput, Dr. Nitesh Singh
1 / 1 shared
Rajput, Nitesh Singh
1 / 2 shared
Kundu, Amit Kumar
1 / 2 shared
Rathore, Rajesh
1 / 1 shared
Kumar, Anil
1 / 19 shared
Srivastava, Avanish
1 / 1 shared
Bakshi, Payal
1 / 1 shared
Yadav, Rajesh
1 / 1 shared
Aneesh, Janardhanakurup
1 / 1 shared
Kim, Sang-Woo
1 / 2 shared
Adarsh, K. V.
1 / 5 shared
Kumar, Binay
1 / 1 shared
Sinha, Nidhi
1 / 1 shared
Tiwari, Atul
1 / 11 shared
Pandey, Kailash Nath
1 / 1 shared
Nema, S. K.
1 / 4 shared
Mathur, Gyanesh Narain
1 / 1 shared
Chart of publication period
2024
2023
2022
2020
2017
2012
2004

Co-Authors (by relevance)

  • Mallick, Tamali
  • Patidar, Ravi
  • Thakur, Vijay Kumar
  • Pappu, Asokan
  • Chaturvedi, Ranjan
  • Khan, Anam
  • Chaturvedi, Ashish Kumar
  • Badatya, Simadri
  • Srivastava, Avanish Kumar
  • Sharma, Charu
  • Sathish, N.
  • Rajput, Dr. Nitesh Singh
  • Rajput, Nitesh Singh
  • Kundu, Amit Kumar
  • Rathore, Rajesh
  • Kumar, Anil
  • Srivastava, Avanish
  • Bakshi, Payal
  • Yadav, Rajesh
  • Aneesh, Janardhanakurup
  • Kim, Sang-Woo
  • Adarsh, K. V.
  • Kumar, Binay
  • Sinha, Nidhi
  • Tiwari, Atul
  • Pandey, Kailash Nath
  • Nema, S. K.
  • Mathur, Gyanesh Narain
OrganizationsLocationPeople

article

Flexible Interconnected Cu‐Ni Nanoalloys Decorated Carbon Nanotube‐Poly(vinylidene fluoride) Piezoelectric Nanogenerator

  • Badatya, Simadri
  • Kumar, Anil
  • Gupta, Manoj Kumar
  • Srivastava, Avanish
Abstract

<jats:title>Abstract</jats:title><jats:p>Herein, high‐performance flexible and stable Cu‐Ni nanoalloy decorated carbon nanotube (CNT) reinforced poly(vinylidene fluoride) (PVDF) based piezoelectric nanogenerator is presented for the first time with very high current and power density. The formation of crystalline β‐phase is confirmed using FT‐IR and Raman spectra analysis. HR‐TEM study reveals the formation of Cu‐Ni nanoalloys with well‐defined interconnected structure with CNT. The Cu‐Ni nanoalloy decorated CNT‐PVDF nanogenerator device exhibits a high output voltage of 12 V and high current density of 0.3 <jats:bold>µ</jats:bold>A cm<jats:sup>−2</jats:sup> compared to pristine PVDF nanogenerator (4 V and 10 nA cm<jats:sup>−2</jats:sup>). Very high power density of 204 <jats:bold>µ</jats:bold>W cm<jats:sup>−3</jats:sup> is obtained from the nanocomposite nanogenerator. Piezoelectric force microscopy study reveals very high piezoelectric charge coefficient (<jats:italic>d</jats:italic><jats:sub>33</jats:sub>) of about 160 pm V<jats:sup>−1</jats:sup> from Cu‐Ni decorated CNT‐PVDF. Very stable output performance with almost no degradation till 1500 cycles is observed from the Cu‐Ni nanoalloy CNT‐PVDF nanogenerator. Such high stability is due to its dramatic improved high tensile strength of 60 MPa. Very high dielectric constant of 500 is observed from Cu‐Ni decorated CNT‐PVDF as compared to pristine PVDF (<jats:bold>ε</jats:bold>’ <jats:bold>≈</jats:bold> 20). The dramatic increase in output performance even under without electrical poling is discussed in light of self‐dipole alignment, in‐situ poling, high <jats:italic>d</jats:italic><jats:sub>33</jats:sub>, interfacial polarization, and enhanced dielectric properties.</jats:p>

Topics
  • nanocomposite
  • density
  • impedance spectroscopy
  • Carbon
  • phase
  • nanotube
  • dielectric constant
  • strength
  • transmission electron microscopy
  • tensile strength
  • current density
  • interfacial