People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Taghavi, Majid
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuationcitations
- 2022Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuationcitations
- 2019Electroactive textile actuators for breathability control and thermal regulation devicescitations
- 2019Thermoplastic electroactive gels for 3D-printable artificial musclescitations
- 2018Electroactive textile actuators for wearable and soft robotscitations
- 2018Towards electroactive gel artificial muscle structurescitations
Places of action
Organizations | Location | People |
---|
article
Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation
Abstract
The layer-by-layer nature of additive manufacturing is well matched to the layer construction of stacked dielectric actuators, with inkjet printing offering a unique opportunity due to its droplet-on-demand capability, suitable for multi-material processing at high resolution. This paper demonstrates the use of high viscosity, multi-material jetting to deposit two-part reactive inks with functionalised nanofillers to digitally manufacture dielectric elastomers for soft robots with high precision and shape manipulation. Graphene-based fillers, including graphene oxide (GO) and thermally reduced graphene oxides (TRGOs), have been incorporated into a polydimethylsiloxane (PDMS) matrix at low loading (below the percolation threshold). Consequently, the dielectric constant of the elastomer dramatically increases (by 97 %) compared to neat PDMS, yielding a more than twenty-fold increase in the electric-field induced electromechanical contraction (from 0.3 to 6.7 %). This study shows that the oxygen-functionalities present in GO and TRGOs, which possess a moderate conductivity, improve the dispersion of those fillers in polymer matrices, thus significantly improving the dielectric constant of the polymer composites. Inkjet printing of high-performance, soft electroactive composites enables high-speed, reliable fabrication of monolithic artificial muscles (leading to stronger, cheaper, and more capable soft robotic devices) and provides a vital steppingstone towards fully additively manufactured soft robots.