People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Allegro, Isabel
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Organosilicon-Based Ligand Design for High-Performance Perovskite Nanocrystal Films for Color Conversion and X-ray Imagingcitations
- 2021A Self‐Assembly Method for Tunable and Scalable Nano‐Stamps: A Versatile Approach for Imprinting Nanostructurescitations
- 2021Exciton versus free carrier emission: Implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskitescitations
- 2019Continuous wave amplified spontaneous emission in phase-stable lead halide perovskitescitations
- 2019Continuous wave amplified spontaneous emission in phase-stable triple cation lead halide perovskite thin filmscitations
Places of action
Organizations | Location | People |
---|
article
A Self‐Assembly Method for Tunable and Scalable Nano‐Stamps: A Versatile Approach for Imprinting Nanostructures
Abstract
In nanoimprint lithography (NIL), the imprinting stamp's fabrication is still a significant cost factor among the consumables. Bottom-up lithography approaches based on a phase-separation of polymer blends can provide a cost-effective route for fabricating these stamps. Today's polymers used to prepare phase-separated nanostructures (PSN), however, exhibit low glass transition temperatures. As a result, the PSN are prone to in-plane stamp distortions in the presence of high imprinting pressure and temperature, limiting their practical relevance for NIL. Here, the realization of mechanically and thermally stable PSN-based imprinting stamps for NIL systems via a phase-separation of a homopolymer/inorganic–organic hybrid polymer blend is reported. It is demonstrated that these imprinting stamps are easily tunable and scalable by adjusting the formulation of homopolymer/hybrid polymer mixture and deposition conditions. Feature sizes in PSN ranging from a few μm down to 100 nm are achieved through an interplay of these factors. As demonstrations of the envisioned applications, the developed imprinting stamps are integrated into a roll-to-roll NIL system for patterning a polystyrene thin-film. Moreover, light management is demonstrated by nanopatterning of a perovskite semiconductor in plate-to-plate process. The nanopatterned perovskite film achieves an integrated absorption and a photoluminescence emission peak increase of 7%$_{rel}$ and 121%$_{rel}$, respectively.