Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eulate, Eva Alvarez De

  • Google
  • 2
  • 9
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Plasma Deposited Polyoxazoline Thin Films for the Biofunctionalization of Electrochemical Sensors8citations
  • 2021Electrochemical stability of PEDOT for wearable on-skin application19citations

Places of action

Chart of shared publication
Whiteley, Amelia
1 / 1 shared
Amoura, Cherine
1 / 1 shared
Priest, Craig
1 / 3 shared
Gheorghiu, Alexandru
1 / 2 shared
Macgregor, Melanie
1 / 10 shared
Mokhtar, Siti Musliha Ajmal
1 / 1 shared
Evans, Drew R.
1 / 4 shared
Prow, Tarl W.
1 / 1 shared
Yamada, Miko
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Whiteley, Amelia
  • Amoura, Cherine
  • Priest, Craig
  • Gheorghiu, Alexandru
  • Macgregor, Melanie
  • Mokhtar, Siti Musliha Ajmal
  • Evans, Drew R.
  • Prow, Tarl W.
  • Yamada, Miko
OrganizationsLocationPeople

article

Plasma Deposited Polyoxazoline Thin Films for the Biofunctionalization of Electrochemical Sensors

  • Whiteley, Amelia
  • Amoura, Cherine
  • Priest, Craig
  • Eulate, Eva Alvarez De
  • Gheorghiu, Alexandru
  • Macgregor, Melanie
Abstract

<p>Electrochemical immunosensors are an emerging technology for the fast, sensitive, and reliable diagnosis of diseases from bodily fluids. These sensors work by detecting a change in current upon analyte binding to an immuno-functionalized electrode. Current methods of electrode functionalization are lengthy processes involving self-assembled monolayer formation and wet chemistry biofunctionalization. Herein, thin films deposited from the plasma phase of oxazoline precursors are investigated and optimized as an alternative approach for electrode functionalization. The plasma-enabled method has the advantage of being substrate independent and allows the spontaneous binding of biomolecules in physiological buffer. Surface sensitive analysis techniques are employed to characterize the thickness, reactivity, and stability of the thin films before investigating their electrochemical properties on indium tin oxide and gold electrodes including the feasibility to reduce charge transfer resistance with gold nanoparticles. Last, these films are employed to develop an immunosensor for the detection of free epithelial cell adhesion molecule with a limit of detection of 8.7 ng mL<sup>−1</sup>.</p>

Topics
  • nanoparticle
  • surface
  • phase
  • thin film
  • gold
  • functionalization
  • tin
  • Indium
  • monolayer formation