People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Budd, Peter M.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Mixed matrix and thin-film nanocomposite membranes of PIM-1 and hydrolyzed PIM-1 with Ni- and Co-MOF-74 nanoparticles for CO2 separation: Comparison of blending, grafting and crosslinking fabrication methodscitations
- 2024Stiffening and softening of freshly prepared and aged CTA, PTMSP, and PIM‐1 films exposed to volatile compounds
- 2024High gas permeability in aged superglassy membranes with nanosized UiO-66−NH2/cPIM-1 network fillerscitations
- 2023CO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1citations
- 2022Porous silica nanosheets in PIM-1 membranes for CO2 separationcitations
- 2022Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporationcitations
- 2021Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewatercitations
- 2021Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewatercitations
- 2021PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holescitations
- 2020Superglassy Polymers to Treat Natural Gas by Hybrid Membrane/Amine Processes: Can Fillers Help?citations
- 2020Graphene–PSS/L-DOPA nanocomposite cation exchange membranes for electrodialysis desalinationcitations
- 2019Electrostatically-coupled graphene oxide nanocomposite cation exchange membranecitations
- 2018Impeded physical aging in PIM-1 membranes containing graphene-like fillerscitations
- 2018Graphene oxide – polybenzimidazolium nanocomposite anion exchange membranes for electrodialysiscitations
- 2018Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO 2 separationcitations
- 2018Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separationcitations
- 2018Graphene/Polyamide Laminates for Supercritical CO 2 and H 2 S Barrier Applications: An Approach toward Permeation Shutdowncitations
- 2018Graphene/Polyamide Laminates for Supercritical CO2 and H2S Barrier Applications: An Approach toward Permeation Shutdowncitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2016Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporositycitations
- 2005Polymerization and carbonization of high internal phase emulsionscitations
- 2004Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materialscitations
Places of action
Organizations | Location | People |
---|
article
Electrospun Adsorptive Nanofibrous Membranes from Ion Exchange Polymers to Snare Textile Dyes from Wastewater
Abstract
Increasing discharges of industrial wastewater, along with ever‐stricter regulations for the protection of natural water sources, have amplified the demand for highly efficient water treatment technologies. Here, electrospun nanofibrous polyimides enhanced with ion exchange properties are proposed as adsorptive membranes for the treatment of dye‐loaded textile wastewater. With the careful selection of monomers, carboxyl‐functionalized porous polyimides are synthesized in a single step and then further decorated with strong cation and anion exchange side groups. Nuclear magnetic resonance spectroscopy and thermal gravimetric analysis are used to investigate the alkylation degree and total exchange capacity of the polymers. The electrospinning conditions are optimized to produce highly flexible membrane mats with a uniform nanofibrous structure. A series of dye sorption experiments on the nanofibrous membranes reveals the adsorption kinetics and the effects of the polyimide backbone, the charged side groups, and the hydrophilicity. A recycling study is conducted to confirm the stability of the adsorbent membranes. The results suggest that nanofibrous polyimide membranes enhanced with ion exchange properties are promising candidates for the treatment of dye‐laden wastewater. Owing to their facile syntheses and unique properties, these membranes show promising potential in environmental applications.