People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chundak, Mykhailo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 2024Area-Selective Etching of Poly(lactic acid) Films via Catalytic Hydrogenolysis and Crackingcitations
- 2023Molecular layer deposition of hybrid silphenylene-based dielectric filmcitations
- 2023Atomic Layer Deposition of Boron-Doped Al2O3 Dielectric Filmscitations
- 2022Atomic layer deposition of PbCl2, PbBr2 and mixed lead halide (Cl, Br, I) PbXnY2-n thin filmscitations
- 2020Argon gas cluster fragmentation and scattering as a probe of the surface physics of thermoset polymerscitations
Places of action
Organizations | Location | People |
---|
article
Atomic Layer Deposition of Molybdenum Carbide Thin Films
Abstract
The development of deposition processes for metal carbide thin films is rapidly advancing, driven by their potential for applications including catalysis, batteries, and semiconductor devices. Within this landscape, atomic layer deposition (ALD) offers exceptional conformality, uniformity, and thickness control on spatially complex structures. This paper presents a comprehensive study on the thermal ALD of MoCx with MoCl5 and 1,4-bis(trimethylgermyl)-1,4-dihydropyrazine [(Me3Ge)2DHP] as precursors, focusing on the functional properties and characterization of the films. The depositions are conducted at 200–300 °C and very smooth films with RMS Rq ≈0.3–0.6 nm on Si, TiN, and HfO2 substrates are obtained. The process has a high growth rate of 1.5 Å cycle−1 and the films appear to be continuous already after 5 cycles. The films are conductive even at thicknesses below 5 nm, and films above 18 nm exhibit superconductivity up to 4.4 K. In lieu of suitable references, Raman modes for molybdenum carbides and nitrides are calculated and X-ray diffraction and X-ray photoelectron spectroscopy are used for phase analysis.