Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Widemann, Maximilian

  • Google
  • 3
  • 14
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024A Small Step for Epitaxy, a Large Step Toward Twist Angle Control in 2D Heterostructures2citations
  • 2023In-situ Transmission Electron Microscopy of Crystal Growth under MOVPE Conditionscitations
  • 2023Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holder4citations

Places of action

Chart of shared publication
Volz, Kerstin
2 / 14 shared
Pasko, Sergej
1 / 4 shared
Glowatzki, Johannes
1 / 2 shared
Krotkus, Simonas
1 / 4 shared
Maßmeyer, Oliver
1 / 3 shared
Ojaghi Dogahe, Badrosadat
1 / 1 shared
Beyer, Andreas
2 / 9 shared
Belz, Jürgen
1 / 3 shared
Bergmann, Max
1 / 2 shared
Günkel, Robin
1 / 2 shared
Krug, David Peter
1 / 1 shared
Gruber, Felix
1 / 1 shared
Ahmed, Shamail
1 / 3 shared
Demuth, Thomas
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Volz, Kerstin
  • Pasko, Sergej
  • Glowatzki, Johannes
  • Krotkus, Simonas
  • Maßmeyer, Oliver
  • Ojaghi Dogahe, Badrosadat
  • Beyer, Andreas
  • Belz, Jürgen
  • Bergmann, Max
  • Günkel, Robin
  • Krug, David Peter
  • Gruber, Felix
  • Ahmed, Shamail
  • Demuth, Thomas
OrganizationsLocationPeople

article

A Small Step for Epitaxy, a Large Step Toward Twist Angle Control in 2D Heterostructures

  • Volz, Kerstin
  • Pasko, Sergej
  • Glowatzki, Johannes
  • Krotkus, Simonas
  • Widemann, Maximilian
  • Maßmeyer, Oliver
  • Ojaghi Dogahe, Badrosadat
  • Beyer, Andreas
  • Belz, Jürgen
  • Bergmann, Max
  • Günkel, Robin
Abstract

<jats:title>Abstract</jats:title><jats:p>2D materials have received a lot of interest over the past decade. Especially van der Waals (vdW) 2D materials, such as transition metal dichalcogenides (TMDCs), and their heterostructures exhibit semiconducting properties that make them highly suitable for novel device applications. Controllable mixing and matching of the 2D materials with different properties and precise control of the in‐plane twist angle in these heterostructures are essential to achieve superior properties and need to be established through large‐scale device fabrication. To gain fundamental insight into the potential control of these twist angles, 2D heterostructures of tungsten disulfide (WS<jats:sub>2</jats:sub>) and graphene (Gr) grown by bottom‐up synthesis via metal‐organic chemical vapor deposition (MOCVD) are investigated using a scanning transmission electron microscope (STEM). Specifically, the combination of conventional high‐resolution imaging with scanning nanobeam diffraction (SNBD) using advanced 4D STEM techniques is used to analyze moiré structures. The latter technique is used to reveal the epitaxial alignment within the WS<jats:sub>2</jats:sub>/Gr heterostructure, showing a direct influence of the underlying Gr layers on the moiré structure in the subsequent WS<jats:sub>2</jats:sub> layers. In particular, the importance of grain boundaries (GBs) within the underlying WS<jats:sub>2</jats:sub> and Gr layers on the structure of moiré patterns with rotation angles below 2° is discussed.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • tungsten
  • chemical vapor deposition