People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Verbeeck, Johan
Hasselt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Enhanced Piezoelectricity by Polarization Rotation through Thermal Strain Manipulation in PbZr<sub>0.6</sub>Ti<sub>0.4</sub>O<sub>3</sub> Thin Films
- 2024Investigation of the Octahedral Network Structure in Formamidinium Lead Bromide Nanocrystals by Low-Dose Scanning Transmission Electron Microscopycitations
- 2024Investigation of the octahedral network structure in formamidinium lead bromide nanocrystals by low-dose scanning transmission electron microscopycitations
- 2024Tailoring Mechanical Properties and Shear Band Propagation in ZrCu Metallic Glass Nanolaminates Through Chemical Heterogeneities and Interface Densitycitations
- 2024Tailoring Mechanical Properties and Shear Band Propagation in ZrCu Metallic Glass Nanolaminates Through Chemical Heterogeneities and Interface Densitycitations
- 2024The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin filmscitations
- 2024Unveiling the 3D Morphology of Epitaxial GaAs/AlGaAs Quantum Dots
- 2024Photoluminescence of Germanium-Vacancy Centers in Nanocrystalline Diamond Films: Implications for Quantum Sensing Applicationscitations
- 2024Imaging the suppression of ferromagnetism in LaMnO3 by metallic overlayerscitations
- 2024Photoluminescence of Germanium-Vacancy Centers in Nanocrystalline Diamond Films:Implications for Quantum Sensing Applicationscitations
- 2023Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foamscitations
- 2023Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopycitations
- 2023Statistical recommendations for count, binary, and ordinal data in rare disease cross-over trialscitations
- 2022Self-Assembled Epitaxial Cathode-Electrolyte Nanocomposites for 3D Microbatteriescitations
- 2022On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphizationcitations
- 2022On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphizationcitations
- 2022Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1−xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scalescitations
- 2022The Role of SnF2 Additive on Interface Formation in All Lead-Free FASnI(3) Perovskite Solar Cellscitations
- 2021Novel class of nanostructured metallic glass films with superior and tunable mechanical propertiescitations
- 2019Diluted Oxide Interfaces with Tunable Ground Statescitations
- 2019Spectroscopic coincidence experiments in transmission electron microscopycitations
- 2018Measurement of the indirect band gap of diamond with EELS in STEM
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2017On the Origin of Diamond Plates Deposited at Low Temperaturecitations
- 2017Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission propertiescitations
- 2015Homogeneity and composition of AlInGaN: A multiprobe nanostructure studycitations
- 2014Substitutional phosphorus incorporation in nanocrystalline CVD diamond thin filmscitations
- 2011Theoretical Investigation of Grain Size Tuning during Prolonged Bias-Enhanced Nucleationcitations
Places of action
Organizations | Location | People |
---|
article
Enhanced Piezoelectricity by Polarization Rotation through Thermal Strain Manipulation in PbZr<sub>0.6</sub>Ti<sub>0.4</sub>O<sub>3</sub> Thin Films
Abstract
<jats:title>Abstract</jats:title><jats:p>Lead based bulk piezoelectric materials, e.g., PbZr<jats:sub>x</jats:sub>Ti<jats:sub>1‐x</jats:sub>O<jats:sub>3</jats:sub> (PZT), are widely used in electromechanical applications, sensors, and transducers, for which optimally performing thin films are needed. The results of a multi‐domain Landau–Ginzberg‐Devonshire model applicable to clamped ferroelectric thin films are used to predict the lattice symmetry and properties of clamped PZT thin films on different substrates. Guided by the thermal strain phase diagrams that are produced by this model, experimentally structural transitions are observed. These can be related to changes of the piezoelectric properties in PZT(x = 0.6) thin films that are grown on CaF<jats:sub>2</jats:sub>, SrTiO<jats:sub>3</jats:sub> (STO) and 70% PbMg<jats:sub>1/3</jats:sub>Nb<jats:sub>2/3</jats:sub>O<jats:sub>3</jats:sub>‐30% PbTiO<jats:sub>3</jats:sub> (PMN‐PT) substrates by pulsed laser deposition. Through temperature en field dependent in situ X‐ray reciprocal space mapping (RSMs) and piezoelectric force microscopy (PFM), the low symmetry monoclinic phase and polarization rotation are observed in the film on STO and can be linked to the measured enhanced properties. The study identifies a monoclinic ‐rhombohedral <jats:bold><jats:italic>M<jats:sub>C</jats:sub></jats:italic></jats:bold>‐<jats:bold><jats:italic>M<jats:sub>A</jats:sub></jats:italic></jats:bold>‐<jats:bold><jats:italic>R</jats:italic></jats:bold> crystal symmetry path as the polarization rotation mechanism. The films on CaF<jats:sub>2</jats:sub> and PMN‐PT remain in the same symmetry phase up to the ferroelectric‐paraelectric phase transition, as predicted. These results support the validity of the multi‐domain model which provides the possibility to predict the behavior of clamped, piezoelectric PZT thin films, and design films with enhanced properties.</jats:p>