Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zeidler, Andreas

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Annealing‐Free Ohmic Contacts to <i>n</i>‐Type GaN via Hydrogen Plasma‐Assisted Atomic Layer Deposition of Sub‐Nanometer AlO<i><sub>x</sub></i>citations

Places of action

Chart of shared publication
Rieger, Bernhard
1 / 12 shared
Henning, Alex
1 / 1 shared
Sharp, Ian
1 / 6 shared
Bartl, Johannes Daniel
1 / 2 shared
Christis, Maximilian
1 / 2 shared
Stutzmann, Martin
1 / 12 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Rieger, Bernhard
  • Henning, Alex
  • Sharp, Ian
  • Bartl, Johannes Daniel
  • Christis, Maximilian
  • Stutzmann, Martin
OrganizationsLocationPeople

article

Annealing‐Free Ohmic Contacts to <i>n</i>‐Type GaN via Hydrogen Plasma‐Assisted Atomic Layer Deposition of Sub‐Nanometer AlO<i><sub>x</sub></i>

  • Rieger, Bernhard
  • Zeidler, Andreas
  • Henning, Alex
  • Sharp, Ian
  • Bartl, Johannes Daniel
  • Christis, Maximilian
  • Stutzmann, Martin
Abstract

<jats:title>Abstract</jats:title><jats:p>A plasma‐assisted atomic layer deposition (PE‐ALD) process is reported for creating ohmic contacts to n‐type GaN that combines native oxide reduction, near‐surface doping, and encapsulation of GaN in a single processing step, thereby eliminating the need for both wet chemical etching of the native oxide before metallization and thermal annealing after contact formation. Repeated ALD cycling of trimethyl aluminum (TMA) and high‐intensity hydrogen (H<jats:sub>2</jats:sub>) plasma results in the deposition of a sub‐nanometer‐thin (≈8 Å) AlO<jats:sub>x</jats:sub> layer via the partial transformation of the GaN surface oxide into AlO<jats:sub>x</jats:sub>. Hydrogen plasma‐induced nitrogen vacancies in the near‐surface region of GaN serve as shallow donors, promoting efficient out‐of‐plane electrical transport. Subsequent metallization with a Ti/Al/Ti/Au stack results in low contact resistance, ohmic behavior, and smooth morphology without requiring annealing. This electrical contracting approach thus meets the thermal budget requirements for Si‐based complementary metal–oxide–semiconductor structures and can facilitate the design and fabrication of advanced GaN‐on‐Si heterodevices.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • aluminium
  • semiconductor
  • Nitrogen
  • Hydrogen
  • etching
  • annealing
  • atomic layer deposition