People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Taheri, Peyman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutescitations
- 2023Biodegradation of Oxide Nanoparticles in Apoferritin Protein Media: A Systematic Electrochemical Approachcitations
- 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffoldscitations
- 2022Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regenerationcitations
- 2022Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous ironcitations
- 2021Nanoscopic and in-situ cross-sectional observations of Li-based conversion coating formation using liquid-phase TEMcitations
- 2021Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffoldscitations
- 2021Extrusion-based 3D printed biodegradable porous ironcitations
- 2021Simplistic correlations between molecular electronic properties and inhibition efficiencies: Do they really exist?citations
- 2020In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagationcitations
- 2020Additively manufactured biodegradable porous zinccitations
- 2019Self-healing epoxy nanocomposite coatings based on dual-encapsulation of nano-carbon hollow spheres with film-forming resin and curing agentcitations
- 2019Mechanical and Corrosion Protection Properties of a Smart Composite Epoxy Coating with Dual-Encapsulated Epoxy/Polyamine in Carbon Nanospherescitations
- 2018Fabrication and characterization of graphene-based carbon hollow spheres for encapsulation of organic corrosion inhibitorscitations
- 2018Enhanced corrosion protection of mild steel by the synergetic effect of zinc aluminum polyphosphate and 2-mercaptobenzimidazole inhibitors incorporated in epoxy-polyamide coatingscitations
- 2017Improved corrosion resistance of aluminum brazing sheet by a post-brazing heat treatmentcitations
Places of action
Organizations | Location | People |
---|
article
Biodegradation of Oxide Nanoparticles in Apoferritin Protein Media: A Systematic Electrochemical Approach
Abstract
<jats:title>Abstract</jats:title><jats:p>Functional oxide nanoparticles are extensively utilized in the last decades for biomedical purposes due to their unique functional properties. Nevertheless, their biodegradation mechanism by biological species, particularly by proteins at oxide/protein interfaces, still remains limited. Here, a systematic approaches is provided to investigate electrochemical behavior, electronic properties, and biodegradation mechanism of cobalt ferrite (CFO) and cobalt ferrite‐bismuth ferrite (CFO‐BFO) core‐shell nanoparticles in apoferritin‐containing media. Scanning Kelvin probe force microscopy results indicate that the presence of a thin shell (≈5 nm) of BFO on CFO causes a significant increase in surface potential. The potentiodynamic polarization measurements in different solutions showed higher anodic current densities for both samples when decreasing pH and increasing apoferritin concentration. Notably, CFO‐BFO exhibits lower anodic current densities than CFO due to a slightly higher flat band potential and lower donor density distribution on CFO‐BFO than on CFO, which results in lower electrochemical activity. Long‐term monitoring reveals that biodegradation of both nanoparticles is accelerated by high apoferritin concentrations and acidic media, resulting in the decrease of electrochemical potentials and impedance values, and enhancement of metal ion release. Thus, this systematic biodegradation study can help to predict the lifespan and toxicity of these functional nanoparticles in biological environments.</jats:p>