Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

García-Nieto, Iván

  • Google
  • 1
  • 4
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Transient Dual‐Response Iontronic Strain Sensor Based on Gelatin and Cellulose Nanocrystals Eutectogel Nanocomposites17citations

Places of action

Chart of shared publication
Pimenteldomínguez, Reinher
1 / 1 shared
Carrasco-Saavedra, Saúl
1 / 1 shared
Tanguy, Nicolas Roland
1 / 1 shared
Mota-Morales, Josue
1 / 5 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Pimenteldomínguez, Reinher
  • Carrasco-Saavedra, Saúl
  • Tanguy, Nicolas Roland
  • Mota-Morales, Josue
OrganizationsLocationPeople

article

Transient Dual‐Response Iontronic Strain Sensor Based on Gelatin and Cellulose Nanocrystals Eutectogel Nanocomposites

  • García-Nieto, Iván
  • Pimenteldomínguez, Reinher
  • Carrasco-Saavedra, Saúl
  • Tanguy, Nicolas Roland
  • Mota-Morales, Josue
Abstract

<jats:title>Abstract</jats:title><jats:p>The emergence of wearable strain sensors in soft electronics has the potential to revolutionize healthcare and robotics. However, current sensors are based on petroleum‐based conductive composites that have a limited strain range. Ionic conductors such as hydrogels offer expanded strain range but have poor long‐term stability and restricted temperature operating window. Deep eutectic solvents (DESs) are promising nonaqueous electrolytes alternatives with green credentials. By combining DES electrolytes with biopolymers, transient ionic conductors are developed with high stretchability, and excellent chemical and thermal stability. Herein, cellulose nanocrystals (CNC) are incorporated, bearing ─OSO<jats:sub>3</jats:sub>H or ─COOH groups, to gelatin‐based eutectogels to produce nanocomposites with enhanced properties and additional functionalities. The eutectogel nanocomposite containing 1.0 wt.% COOH‐CNC demonstrate enhanced stretchability (375%) and ionic conductivity (3.0 mS cm<jats:sup>−1</jats:sup>) compared to the pristine gelatin‐based eutectogel (300% strain and 2.0 mS cm<jats:sup>−1</jats:sup>, respectively). Moreover, the spontaneous assembly of CNC within the eutectogel results in birefringence, which changes when stretching the nanocomposites. Thus, CNC incorporation provides the gelatin‐based eutectogel with a dual‐response capabilities when stretched, expanding their applications to new areas such as transient multi‐responsive strain sensors for wearable electronics, and multifunctional substrates for soft robotics, without compromising overall performance or sustainability.</jats:p>

Topics
  • nanocomposite
  • mass spectrometry
  • cellulose