Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vogel, Cordula

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023In Situ Nanoindentation at Elevated Humidities2citations

Places of action

Chart of shared publication
Günther, Björn
1 / 1 shared
Zlotnikov, Igor
1 / 19 shared
Tadayon, Kian
1 / 1 shared
Bar-On, Benny
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Günther, Björn
  • Zlotnikov, Igor
  • Tadayon, Kian
  • Bar-On, Benny
OrganizationsLocationPeople

article

In Situ Nanoindentation at Elevated Humidities

  • Günther, Björn
  • Vogel, Cordula
  • Zlotnikov, Igor
  • Tadayon, Kian
  • Bar-On, Benny
Abstract

Nanoindentation is one of the most widespread methods to measure the mechanical performance of complex materials systems. As it allows for local characterization of composite architectures with sub-micron spatial features and a large range of properties, nanoindentation is commonly used to measure the properties of biological materials. In situ nanoindentation, a further development of the approach, is a powerful tool for the analysis of plastic deformation and failure of materials. Here, samples can be mechanically manipulated using the indenter, while their behavior is monitored with the resolution of a scanning electron microscope (SEM). Indeed, numerous studies demonstrate the potential of this approach for studying the most fundamental material characteristics. However, so far, these measurements are performed in high-vacuum conditions inherent to the conventional electron microscopy method, which are irrelevant when studying biological structures that evolved to perform in hydrated conditions. In this work, the ability to conduct nanoindentation experiments under controlled humidity and temperature inside an environmental SEM is developed. This technique has the potential to become crucial for materials design and characterization in many domains where humidity has a significant impact on performance. These include organic/polymer systems, microelectronic and optoelectronic devices, materials for catalysis, batteries, and many more.

Topics
  • impedance spectroscopy
  • polymer
  • scanning electron microscopy
  • experiment
  • composite
  • nanoindentation
  • biological material