People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boffa, Vittorio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024A self-cleaning thermocatalytic membrane for bisphenol a abatement and fouling removalcitations
- 2023A Thermocatalytic Ceramic Membrane by Perovskite Incorporation in the Alumina Frameworkcitations
- 2023Thermocatalytic Performance of LaCo1−xNixO3−δ Perovskites in the Degradation of Rhodamine Bcitations
- 2023Beneficial effect of cerium excess on in situ grown Sr0.86Ce0.14FeO3–CeO2 thermocatalysts for the degradation of bisphenol Acitations
- 2023Removal of As(III) via adsorption and photocatalytic oxidation with magnetic Fe-Cu nanocompositescitations
- 2023Beneficial effect of cerium excess on in situ grown Sr 0.86 Ce 0.14 FeO 3 –CeO 2 thermocatalysts for the degradation of bisphenol Acitations
- 2021Ceramic Processing of Silicon Carbide Membranes with the Aid of Aluminum Nitrate Nonahydrate: Preparation, Characterization, and Performancecitations
- 2021Hydrothermal preparation of B–TiO2-graphene oxide ternary nanocomposite, characterization and photocatalytic degradation of bisphenol A under simulated solar irradiationcitations
- 2021Degradation of organic micropollutants in water using a novel thermocatalytic membrane
- 2021A graphene oxide-based nanofiltration membrane for the catalytic abatement of organic pollutants in wastewater
- 2020Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatmentcitations
- 2020Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatment:From Laboratory to Industrial Scalecitations
- 2018Catalytic activity of doped SrFeO3-δ perovskite-type oxide ceramics for degradation of water pollu-tants
- 2017Mutual-stabilization in chemically bonded graphene oxide–TiO2 heterostructures synthesized by a sol–gel approachcitations
- 2014Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubescitations
- 2013Toward the effective design of steam-stable silica-based membranescitations
- 2012Development of nanoporous TiO2 and SiC membranes for membrane filtration
- 2009Urban Wastes as Sources of Valuable Chemicals for Sustainable development: Surfactants, dispersing polymers and polyelectrolytes of biological origin
Places of action
Organizations | Location | People |
---|
article
A Thermocatalytic Ceramic Membrane by Perovskite Incorporation in the Alumina Framework
Abstract
Access to clean water is limited by the increasing amount of persistent organic pollutants (POPs), since current methods fail to remove POPs completely. Therefore, new treatment technologies of surface water and wastewater are needed. In this study, two treatment methods are combined in one step, i.e., membrane filtration and thermocatalytic chemical oxidation of POPs. A perovskite-type catalyst with formula Sr 0.85 Ce 0.15 FeO 3-δ (SCF) is incorporated into an alumina membrane using a simple two-step heat treatment to minimize any chemical reaction of the catalytic active perovskite with alumina. First, a sintering process under inert atmosphere, then, a heat-treatment under oxidative conditions to oxidize the iron species in the perovskite structure. The well-known thermocatalytic properties of SCF make the membrane thermocatalytic and thus able to degrade pollutants under dark conditions without addition of oxidants. The SCF content in the membrane is varied between 0 and 15 wt% to explore the change in membrane properties. Results demonstrate that the thermocatalytic membranes have great potential for continuous membrane filtration and simultaneous degradation of POPs. When considering methyl orange, up to 100% removal is obtained at room temperature, whereas up to 93% of bisphenol A is removed at temperatures approaching 60 °C.