Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luis, Roberto De Fernandezde

  • Google
  • 1
  • 12
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023On The Multiscale Structure and Morphology of PVDF‐HFP@MOF Membranes in The Scope of Water Remediation Applications14citations

Places of action

Chart of shared publication
Laza, José M.
1 / 2 shared
King, Stephen
1 / 7 shared
Vilasvilela, José L.
1 / 2 shared
Almásy, László
1 / 11 shared
Martins, Pedro M.
1 / 17 shared
Kriechbaum, Manfred
1 / 16 shared
Salazar, Hugo
1 / 8 shared
Porro, José M.
1 / 3 shared
Valverde, Ainara
1 / 4 shared
Petrenko, Viktor I.
1 / 4 shared
Lancerosmendez, Senentxu
1 / 14 shared
Gonçalves, Bruna F.
1 / 7 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Laza, José M.
  • King, Stephen
  • Vilasvilela, José L.
  • Almásy, László
  • Martins, Pedro M.
  • Kriechbaum, Manfred
  • Salazar, Hugo
  • Porro, José M.
  • Valverde, Ainara
  • Petrenko, Viktor I.
  • Lancerosmendez, Senentxu
  • Gonçalves, Bruna F.
OrganizationsLocationPeople

article

On The Multiscale Structure and Morphology of PVDF‐HFP@MOF Membranes in The Scope of Water Remediation Applications

  • Laza, José M.
  • King, Stephen
  • Vilasvilela, José L.
  • Almásy, László
  • Luis, Roberto De Fernandezde
  • Martins, Pedro M.
  • Kriechbaum, Manfred
  • Salazar, Hugo
  • Porro, José M.
  • Valverde, Ainara
  • Petrenko, Viktor I.
  • Lancerosmendez, Senentxu
  • Gonçalves, Bruna F.
Abstract

<jats:title>Abstract</jats:title><jats:p>Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) is a highly versatile polymer used for water remediation due to its chemical robustness and processability. By incorporating metal‐organic frameworks (MOFs) into PVDF‐HFP membranes, the material can gain metal‐adsorption properties. It is well known that the effectiveness of these composites removing heavy metals depends on the MOF's chemical encoding and the extent of encapsulation within the polymer. In this study, it is examined how the micro to nanoscale structure of PVDF‐HFP@MOF membranes influences their adsorption performance for Cr<jats:sup>VI</jats:sup>. To this end, the micro‐ and nanostructure of PVDF‐HFP@MOF membranes are thoroughly studied by a set of complementary techniques. In particular, small‐angle X‐ray and neutron scattering allow to precisely describe the nanostructure of the polymer‐MOF complex systems, while scanning microscopy and mercury porosimetry give a clear insight into the macro and mesoporosity of the system. By correlating nanoscale structural features with the adsorption capacity of the MOF nanoparticles, different degrees of full encapsulation‐based on the PVDF‐HFP processing and structuration from the macro to nanometer scale are observed. Additionally, the in situ functionalization of MOF nanoparticles with cysteine is investigated to enhance their adsorption toward Hg<jats:sup>II</jats:sup>. This functionalization enhanced the adsorption capacity of the MOFs from 8 to 30 mg·g<jats:sup>−1</jats:sup>.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • composite
  • functionalization
  • microscopy
  • neutron scattering
  • porosimetry
  • Mercury